summaryrefslogtreecommitdiff
path: root/SRC/ztrcon.f
blob: e7cc1968d1e5f21f95846feda19f8d81c8ddaa52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
*> \brief \b ZTRCON
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZTRCON + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrcon.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrcon.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrcon.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZTRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
*                          RWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, NORM, UPLO
*       INTEGER            INFO, LDA, N
*       DOUBLE PRECISION   RCOND
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( LDA, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZTRCON estimates the reciprocal of the condition number of a
*> triangular matrix A, in either the 1-norm or the infinity-norm.
*>
*> The norm of A is computed and an estimate is obtained for
*> norm(inv(A)), then the reciprocal of the condition number is
*> computed as
*>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NORM
*> \verbatim
*>          NORM is CHARACTER*1
*>          Specifies whether the 1-norm condition number or the
*>          infinity-norm condition number is required:
*>          = '1' or 'O':  1-norm;
*>          = 'I':         Infinity-norm.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  A is upper triangular;
*>          = 'L':  A is lower triangular.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          = 'N':  A is non-unit triangular;
*>          = 'U':  A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
*>          upper triangular part of the array A contains the upper
*>          triangular matrix, and the strictly lower triangular part of
*>          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
*>          triangular part of the array A contains the lower triangular
*>          matrix, and the strictly upper triangular part of A is not
*>          referenced.  If DIAG = 'U', the diagonal elements of A are
*>          also not referenced and are assumed to be 1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>          The reciprocal of the condition number of the matrix A,
*>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERcomputational
*
*  =====================================================================
      SUBROUTINE ZTRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
     $                   RWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORM, UPLO
      INTEGER            INFO, LDA, N
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT, ONENRM, UPPER
      CHARACTER          NORMIN
      INTEGER            IX, KASE, KASE1
      DOUBLE PRECISION   AINVNM, ANORM, SCALE, SMLNUM, XNORM
      COMPLEX*16         ZDUM
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH, ZLANTR
      EXTERNAL           LSAME, IZAMAX, DLAMCH, ZLANTR
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLATRS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DIMAG, MAX
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
      NOUNIT = LSAME( DIAG, 'N' )
*
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTRCON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      END IF
*
      RCOND = ZERO
      SMLNUM = DLAMCH( 'Safe minimum' )*DBLE( MAX( 1, N ) )
*
*     Compute the norm of the triangular matrix A.
*
      ANORM = ZLANTR( NORM, UPLO, DIAG, N, N, A, LDA, RWORK )
*
*     Continue only if ANORM > 0.
*
      IF( ANORM.GT.ZERO ) THEN
*
*        Estimate the norm of the inverse of A.
*
         AINVNM = ZERO
         NORMIN = 'N'
         IF( ONENRM ) THEN
            KASE1 = 1
         ELSE
            KASE1 = 2
         END IF
         KASE = 0
   10    CONTINUE
         CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
         IF( KASE.NE.0 ) THEN
            IF( KASE.EQ.KASE1 ) THEN
*
*              Multiply by inv(A).
*
               CALL ZLATRS( UPLO, 'No transpose', DIAG, NORMIN, N, A,
     $                      LDA, WORK, SCALE, RWORK, INFO )
            ELSE
*
*              Multiply by inv(A**H).
*
               CALL ZLATRS( UPLO, 'Conjugate transpose', DIAG, NORMIN,
     $                      N, A, LDA, WORK, SCALE, RWORK, INFO )
            END IF
            NORMIN = 'Y'
*
*           Multiply by 1/SCALE if doing so will not cause overflow.
*
            IF( SCALE.NE.ONE ) THEN
               IX = IZAMAX( N, WORK, 1 )
               XNORM = CABS1( WORK( IX ) )
               IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
     $            GO TO 20
               CALL ZDRSCL( N, SCALE, WORK, 1 )
            END IF
            GO TO 10
         END IF
*
*        Compute the estimate of the reciprocal condition number.
*
         IF( AINVNM.NE.ZERO )
     $      RCOND = ( ONE / ANORM ) / AINVNM
      END IF
*
   20 CONTINUE
      RETURN
*
*     End of ZTRCON
*
      END