summaryrefslogtreecommitdiff
path: root/SRC/ztgsy2.f
blob: c3ab199377bf785e91ddc55ff0889d69093bfb46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
*> \brief \b ZTGSY2 solves the generalized Sylvester equation (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZTGSY2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsy2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsy2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsy2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
*                          LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
*                          INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
*       DOUBLE PRECISION   RDSCAL, RDSUM, SCALE
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
*      $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZTGSY2 solves the generalized Sylvester equation
*>
*>             A * R - L * B = scale * C               (1)
*>             D * R - L * E = scale * F
*>
*> using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
*> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
*> N-by-N and M-by-N, respectively. A, B, D and E are upper triangular
*> (i.e., (A,D) and (B,E) in generalized Schur form).
*>
*> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
*> scaling factor chosen to avoid overflow.
*>
*> In matrix notation solving equation (1) corresponds to solve
*> Zx = scale * b, where Z is defined as
*>
*>        Z = [ kron(In, A)  -kron(B**H, Im) ]             (2)
*>            [ kron(In, D)  -kron(E**H, Im) ],
*>
*> Ik is the identity matrix of size k and X**H is the conjuguate transpose of X.
*> kron(X, Y) is the Kronecker product between the matrices X and Y.
*>
*> If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b
*> is solved for, which is equivalent to solve for R and L in
*>
*>             A**H * R  + D**H * L   = scale * C           (3)
*>             R  * B**H + L  * E**H  = scale * -F
*>
*> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
*> = sigma_min(Z) using reverse communicaton with ZLACON.
*>
*> ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL
*> of an upper bound on the separation between to matrix pairs. Then
*> the input (A, D), (B, E) are sub-pencils of two matrix pairs in
*> ZTGSYL.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N', solve the generalized Sylvester equation (1).
*>          = 'T': solve the 'transposed' system (3).
*> \endverbatim
*>
*> \param[in] IJOB
*> \verbatim
*>          IJOB is INTEGER
*>          Specifies what kind of functionality to be performed.
*>          =0: solve (1) only.
*>          =1: A contribution from this subsystem to a Frobenius
*>              norm-based estimate of the separation between two matrix
*>              pairs is computed. (look ahead strategy is used).
*>          =2: A contribution from this subsystem to a Frobenius
*>              norm-based estimate of the separation between two matrix
*>              pairs is computed. (DGECON on sub-systems is used.)
*>          Not referenced if TRANS = 'T'.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          On entry, M specifies the order of A and D, and the row
*>          dimension of C, F, R and L.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          On entry, N specifies the order of B and E, and the column
*>          dimension of C, F, R and L.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA, M)
*>          On entry, A contains an upper triangular matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the matrix A. LDA >= max(1, M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB, N)
*>          On entry, B contains an upper triangular matrix.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the matrix B. LDB >= max(1, N).
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension (LDC, N)
*>          On entry, C contains the right-hand-side of the first matrix
*>          equation in (1).
*>          On exit, if IJOB = 0, C has been overwritten by the solution
*>          R.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the matrix C. LDC >= max(1, M).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is COMPLEX*16 array, dimension (LDD, M)
*>          On entry, D contains an upper triangular matrix.
*> \endverbatim
*>
*> \param[in] LDD
*> \verbatim
*>          LDD is INTEGER
*>          The leading dimension of the matrix D. LDD >= max(1, M).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is COMPLEX*16 array, dimension (LDE, N)
*>          On entry, E contains an upper triangular matrix.
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*>          LDE is INTEGER
*>          The leading dimension of the matrix E. LDE >= max(1, N).
*> \endverbatim
*>
*> \param[in,out] F
*> \verbatim
*>          F is COMPLEX*16 array, dimension (LDF, N)
*>          On entry, F contains the right-hand-side of the second matrix
*>          equation in (1).
*>          On exit, if IJOB = 0, F has been overwritten by the solution
*>          L.
*> \endverbatim
*>
*> \param[in] LDF
*> \verbatim
*>          LDF is INTEGER
*>          The leading dimension of the matrix F. LDF >= max(1, M).
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*>          SCALE is DOUBLE PRECISION
*>          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
*>          R and L (C and F on entry) will hold the solutions to a
*>          slightly perturbed system but the input matrices A, B, D and
*>          E have not been changed. If SCALE = 0, R and L will hold the
*>          solutions to the homogeneous system with C = F = 0.
*>          Normally, SCALE = 1.
*> \endverbatim
*>
*> \param[in,out] RDSUM
*> \verbatim
*>          RDSUM is DOUBLE PRECISION
*>          On entry, the sum of squares of computed contributions to
*>          the Dif-estimate under computation by ZTGSYL, where the
*>          scaling factor RDSCAL (see below) has been factored out.
*>          On exit, the corresponding sum of squares updated with the
*>          contributions from the current sub-system.
*>          If TRANS = 'T' RDSUM is not touched.
*>          NOTE: RDSUM only makes sense when ZTGSY2 is called by
*>          ZTGSYL.
*> \endverbatim
*>
*> \param[in,out] RDSCAL
*> \verbatim
*>          RDSCAL is DOUBLE PRECISION
*>          On entry, scaling factor used to prevent overflow in RDSUM.
*>          On exit, RDSCAL is updated w.r.t. the current contributions
*>          in RDSUM.
*>          If TRANS = 'T', RDSCAL is not touched.
*>          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
*>          ZTGSYL.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          On exit, if INFO is set to
*>            =0: Successful exit
*>            <0: If INFO = -i, input argument number i is illegal.
*>            >0: The matrix pairs (A, D) and (B, E) have common or very
*>                close eigenvalues.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16SYauxiliary
*
*> \par Contributors:
*  ==================
*>
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*>     Umea University, S-901 87 Umea, Sweden.
*
*  =====================================================================
      SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
     $                   LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
     $                   INFO )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
      DOUBLE PRECISION   RDSCAL, RDSUM, SCALE
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      INTEGER            LDZ
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN
      INTEGER            I, IERR, J, K
      DOUBLE PRECISION   SCALOC
      COMPLEX*16         ALPHA
*     ..
*     .. Local Arrays ..
      INTEGER            IPIV( LDZ ), JPIV( LDZ )
      COMPLEX*16         RHS( LDZ ), Z( LDZ, LDZ )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, DCONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Decode and test input parameters
*
      INFO = 0
      IERR = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( NOTRAN ) THEN
         IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
            INFO = -2
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( M.LE.0 ) THEN
            INFO = -3
         ELSE IF( N.LE.0 ) THEN
            INFO = -4
         ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
            INFO = -5
         ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
            INFO = -8
         ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
            INFO = -10
         ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
            INFO = -12
         ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
            INFO = -14
         ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
            INFO = -16
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTGSY2', -INFO )
         RETURN
      END IF
*
      IF( NOTRAN ) THEN
*
*        Solve (I, J) - system
*           A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
*           D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
*        for I = M, M - 1, ..., 1; J = 1, 2, ..., N
*
         SCALE = ONE
         SCALOC = ONE
         DO 30 J = 1, N
            DO 20 I = M, 1, -1
*
*              Build 2 by 2 system
*
               Z( 1, 1 ) = A( I, I )
               Z( 2, 1 ) = D( I, I )
               Z( 1, 2 ) = -B( J, J )
               Z( 2, 2 ) = -E( J, J )
*
*              Set up right hand side(s)
*
               RHS( 1 ) = C( I, J )
               RHS( 2 ) = F( I, J )
*
*              Solve Z * x = RHS
*
               CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
               IF( IERR.GT.0 )
     $            INFO = IERR
               IF( IJOB.EQ.0 ) THEN
                  CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 10 K = 1, N
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
     $                              C( 1, K ), 1 )
                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
     $                              F( 1, K ), 1 )
   10                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
               ELSE
                  CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL,
     $                         IPIV, JPIV )
               END IF
*
*              Unpack solution vector(s)
*
               C( I, J ) = RHS( 1 )
               F( I, J ) = RHS( 2 )
*
*              Substitute R(I, J) and L(I, J) into remaining equation.
*
               IF( I.GT.1 ) THEN
                  ALPHA = -RHS( 1 )
                  CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 )
                  CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 )
               END IF
               IF( J.LT.N ) THEN
                  CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB,
     $                        C( I, J+1 ), LDC )
                  CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE,
     $                        F( I, J+1 ), LDF )
               END IF
*
   20       CONTINUE
   30    CONTINUE
      ELSE
*
*        Solve transposed (I, J) - system:
*           A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J)
*           R(I, I) * B(J, J) + L(I, J) * E(J, J)   = -F(I, J)
*        for I = 1, 2, ..., M, J = N, N - 1, ..., 1
*
         SCALE = ONE
         SCALOC = ONE
         DO 80 I = 1, M
            DO 70 J = N, 1, -1
*
*              Build 2 by 2 system Z**H
*
               Z( 1, 1 ) = DCONJG( A( I, I ) )
               Z( 2, 1 ) = -DCONJG( B( J, J ) )
               Z( 1, 2 ) = DCONJG( D( I, I ) )
               Z( 2, 2 ) = -DCONJG( E( J, J ) )
*
*
*              Set up right hand side(s)
*
               RHS( 1 ) = C( I, J )
               RHS( 2 ) = F( I, J )
*
*              Solve Z**H * x = RHS
*
               CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
               IF( IERR.GT.0 )
     $            INFO = IERR
               CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
               IF( SCALOC.NE.ONE ) THEN
                  DO 40 K = 1, N
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
     $                           1 )
                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
     $                           1 )
   40             CONTINUE
                  SCALE = SCALE*SCALOC
               END IF
*
*              Unpack solution vector(s)
*
               C( I, J ) = RHS( 1 )
               F( I, J ) = RHS( 2 )
*
*              Substitute R(I, J) and L(I, J) into remaining equation.
*
               DO 50 K = 1, J - 1
                  F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) +
     $                        RHS( 2 )*DCONJG( E( K, J ) )
   50          CONTINUE
               DO 60 K = I + 1, M
                  C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) -
     $                        DCONJG( D( I, K ) )*RHS( 2 )
   60          CONTINUE
*
   70       CONTINUE
   80    CONTINUE
      END IF
      RETURN
*
*     End of ZTGSY2
*
      END