1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
|
*> \brief \b ZSYTRI_3X
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZSYTRI_3X + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytri_3x.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytri_3x.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytri_3x.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDA, N, NB
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 A( LDA, * ), E( * ), WORK( N+NB+1, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*> ZSYTRI_3X computes the inverse of a complex symmetric indefinite
*> matrix A using the factorization computed by ZSYTRF_RK or ZSYTRF_BK:
*>
*> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
*>
*> where U (or L) is unit upper (or lower) triangular matrix,
*> U**T (or L**T) is the transpose of U (or L), P is a permutation
*> matrix, P**T is the transpose of P, and D is symmetric and block
*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*>
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are
*> stored as an upper or lower triangular matrix.
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, diagonal of the block diagonal matrix D and
*> factors U or L as computed by ZSYTRF_RK and ZSYTRF_BK:
*> a) ONLY diagonal elements of the symmetric block diagonal
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*> (superdiagonal (or subdiagonal) elements of D
*> should be provided on entry in array E), and
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
*> If UPLO = 'L': factor L in the subdiagonal part of A.
*>
*> On exit, if INFO = 0, the symmetric inverse of the original
*> matrix.
*> If UPLO = 'U': the upper triangular part of the inverse
*> is formed and the part of A below the diagonal is not
*> referenced;
*> If UPLO = 'L': the lower triangular part of the inverse
*> is formed and the part of A above the diagonal is not
*> referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX*16 array, dimension (N)
*> On entry, contains the superdiagonal (or subdiagonal)
*> elements of the symmetric block diagonal matrix D
*> with 1-by-1 or 2-by-2 diagonal blocks, where
*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
*>
*> NOTE: For 1-by-1 diagonal block D(k), where
*> 1 <= k <= N, the element E(k) is not referenced in both
*> UPLO = 'U' or UPLO = 'L' cases.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D
*> as determined by ZSYTRF_RK or ZSYTRF_BK.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (N+NB+1,NB+3).
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> Block size.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
*> inverse could not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16SYcomputational
*
*> \par Contributors:
* ==================
*> \verbatim
*>
*> December 2016, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*>
*> \endverbatim
*
* =====================================================================
SUBROUTINE ZSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N, NB
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 A( LDA, * ), E( * ), WORK( N+NB+1, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 CONE, CZERO
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
$ CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
COMPLEX*16 AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J,
$ U11_I_J, U11_IP1_J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZSYSWAPR, ZTRTRI, ZTRMM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MOD
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
*
* Quick return if possible
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZSYTRI_3X', -INFO )
RETURN
END IF
IF( N.EQ.0 )
$ RETURN
*
* Workspace got Non-diag elements of D
*
DO K = 1, N
WORK( K, 1 ) = E( K )
END DO
*
* Check that the diagonal matrix D is nonsingular.
*
IF( UPPER ) THEN
*
* Upper triangular storage: examine D from bottom to top
*
DO INFO = N, 1, -1
IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
$ RETURN
END DO
ELSE
*
* Lower triangular storage: examine D from top to bottom.
*
DO INFO = 1, N
IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
$ RETURN
END DO
END IF
*
INFO = 0
*
* Splitting Workspace
* U01 is a block ( N, NB+1 )
* The first element of U01 is in WORK( 1, 1 )
* U11 is a block ( NB+1, NB+1 )
* The first element of U11 is in WORK( N+1, 1 )
*
U11 = N
*
* INVD is a block ( N, 2 )
* The first element of INVD is in WORK( 1, INVD )
*
INVD = NB + 2
IF( UPPER ) THEN
*
* Begin Upper
*
* invA = P * inv(U**T) * inv(D) * inv(U) * P**T.
*
CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
*
* inv(D) and inv(D) * inv(U)
*
K = 1
DO WHILE( K.LE.N )
IF( IPIV( K ).GT.0 ) THEN
* 1 x 1 diagonal NNB
WORK( K, INVD ) = CONE / A( K, K )
WORK( K, INVD+1 ) = CZERO
ELSE
* 2 x 2 diagonal NNB
T = WORK( K+1, 1 )
AK = A( K, K ) / T
AKP1 = A( K+1, K+1 ) / T
AKKP1 = WORK( K+1, 1 ) / T
D = T*( AK*AKP1-CONE )
WORK( K, INVD ) = AKP1 / D
WORK( K+1, INVD+1 ) = AK / D
WORK( K, INVD+1 ) = -AKKP1 / D
WORK( K+1, INVD ) = WORK( K, INVD+1 )
K = K + 1
END IF
K = K + 1
END DO
*
* inv(U**T) = (inv(U))**T
*
* inv(U**T) * inv(D) * inv(U)
*
CUT = N
DO WHILE( CUT.GT.0 )
NNB = NB
IF( CUT.LE.NNB ) THEN
NNB = CUT
ELSE
ICOUNT = 0
* count negative elements,
DO I = CUT+1-NNB, CUT
IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
END DO
* need a even number for a clear cut
IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
END IF
CUT = CUT - NNB
*
* U01 Block
*
DO I = 1, CUT
DO J = 1, NNB
WORK( I, J ) = A( I, CUT+J )
END DO
END DO
*
* U11 Block
*
DO I = 1, NNB
WORK( U11+I, I ) = CONE
DO J = 1, I-1
WORK( U11+I, J ) = CZERO
END DO
DO J = I+1, NNB
WORK( U11+I, J ) = A( CUT+I, CUT+J )
END DO
END DO
*
* invD * U01
*
I = 1
DO WHILE( I.LE.CUT )
IF( IPIV( I ).GT.0 ) THEN
DO J = 1, NNB
WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
END DO
ELSE
DO J = 1, NNB
U01_I_J = WORK( I, J )
U01_IP1_J = WORK( I+1, J )
WORK( I, J ) = WORK( I, INVD ) * U01_I_J
$ + WORK( I, INVD+1 ) * U01_IP1_J
WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
$ + WORK( I+1, INVD+1 ) * U01_IP1_J
END DO
I = I + 1
END IF
I = I + 1
END DO
*
* invD1 * U11
*
I = 1
DO WHILE ( I.LE.NNB )
IF( IPIV( CUT+I ).GT.0 ) THEN
DO J = I, NNB
WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
END DO
ELSE
DO J = I, NNB
U11_I_J = WORK(U11+I,J)
U11_IP1_J = WORK(U11+I+1,J)
WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
$ + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
$ + WORK(CUT+I+1,INVD+1) * U11_IP1_J
END DO
I = I + 1
END IF
I = I + 1
END DO
*
* U11**T * invD1 * U11 -> U11
*
CALL ZTRMM( 'L', 'U', 'T', 'U', NNB, NNB,
$ CONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
$ N+NB+1 )
*
DO I = 1, NNB
DO J = I, NNB
A( CUT+I, CUT+J ) = WORK( U11+I, J )
END DO
END DO
*
* U01**T * invD * U01 -> A( CUT+I, CUT+J )
*
CALL ZGEMM( 'T', 'N', NNB, NNB, CUT, CONE, A( 1, CUT+1 ),
$ LDA, WORK, N+NB+1, CZERO, WORK(U11+1,1),
$ N+NB+1 )
*
* U11 = U11**T * invD1 * U11 + U01**T * invD * U01
*
DO I = 1, NNB
DO J = I, NNB
A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
END DO
END DO
*
* U01 = U00**T * invD0 * U01
*
CALL ZTRMM( 'L', UPLO, 'T', 'U', CUT, NNB,
$ CONE, A, LDA, WORK, N+NB+1 )
*
* Update U01
*
DO I = 1, CUT
DO J = 1, NNB
A( I, CUT+J ) = WORK( I, J )
END DO
END DO
*
* Next Block
*
END DO
*
* Apply PERMUTATIONS P and P**T:
* P * inv(U**T) * inv(D) * inv(U) * P**T.
* Interchange rows and columns I and IPIV(I) in reverse order
* from the formation order of IPIV vector for Upper case.
*
* ( We can use a loop over IPIV with increment 1,
* since the ABS value of IPIV(I) represents the row (column)
* index of the interchange with row (column) i in both 1x1
* and 2x2 pivot cases, i.e. we don't need separate code branches
* for 1x1 and 2x2 pivot cases )
*
DO I = 1, N
IP = ABS( IPIV( I ) )
IF( IP.NE.I ) THEN
IF (I .LT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, I ,IP )
IF (I .GT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, IP ,I )
END IF
END DO
*
ELSE
*
* Begin Lower
*
* inv A = P * inv(L**T) * inv(D) * inv(L) * P**T.
*
CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
*
* inv(D) and inv(D) * inv(L)
*
K = N
DO WHILE ( K .GE. 1 )
IF( IPIV( K ).GT.0 ) THEN
* 1 x 1 diagonal NNB
WORK( K, INVD ) = CONE / A( K, K )
WORK( K, INVD+1 ) = CZERO
ELSE
* 2 x 2 diagonal NNB
T = WORK( K-1, 1 )
AK = A( K-1, K-1 ) / T
AKP1 = A( K, K ) / T
AKKP1 = WORK( K-1, 1 ) / T
D = T*( AK*AKP1-CONE )
WORK( K-1, INVD ) = AKP1 / D
WORK( K, INVD ) = AK / D
WORK( K, INVD+1 ) = -AKKP1 / D
WORK( K-1, INVD+1 ) = WORK( K, INVD+1 )
K = K - 1
END IF
K = K - 1
END DO
*
* inv(L**T) = (inv(L))**T
*
* inv(L**T) * inv(D) * inv(L)
*
CUT = 0
DO WHILE( CUT.LT.N )
NNB = NB
IF( (CUT + NNB).GT.N ) THEN
NNB = N - CUT
ELSE
ICOUNT = 0
* count negative elements,
DO I = CUT + 1, CUT+NNB
IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
END DO
* need a even number for a clear cut
IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
END IF
*
* L21 Block
*
DO I = 1, N-CUT-NNB
DO J = 1, NNB
WORK( I, J ) = A( CUT+NNB+I, CUT+J )
END DO
END DO
*
* L11 Block
*
DO I = 1, NNB
WORK( U11+I, I) = CONE
DO J = I+1, NNB
WORK( U11+I, J ) = CZERO
END DO
DO J = 1, I-1
WORK( U11+I, J ) = A( CUT+I, CUT+J )
END DO
END DO
*
* invD*L21
*
I = N-CUT-NNB
DO WHILE( I.GE.1 )
IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
DO J = 1, NNB
WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
END DO
ELSE
DO J = 1, NNB
U01_I_J = WORK(I,J)
U01_IP1_J = WORK(I-1,J)
WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
$ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
$ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
END DO
I = I - 1
END IF
I = I - 1
END DO
*
* invD1*L11
*
I = NNB
DO WHILE( I.GE.1 )
IF( IPIV( CUT+I ).GT.0 ) THEN
DO J = 1, NNB
WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
END DO
ELSE
DO J = 1, NNB
U11_I_J = WORK( U11+I, J )
U11_IP1_J = WORK( U11+I-1, J )
WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
$ + WORK(CUT+I,INVD+1) * U11_IP1_J
WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
$ + WORK(CUT+I-1,INVD) * U11_IP1_J
END DO
I = I - 1
END IF
I = I - 1
END DO
*
* L11**T * invD1 * L11 -> L11
*
CALL ZTRMM( 'L', UPLO, 'T', 'U', NNB, NNB, CONE,
$ A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
$ N+NB+1 )
*
DO I = 1, NNB
DO J = 1, I
A( CUT+I, CUT+J ) = WORK( U11+I, J )
END DO
END DO
*
IF( (CUT+NNB).LT.N ) THEN
*
* L21**T * invD2*L21 -> A( CUT+I, CUT+J )
*
CALL ZGEMM( 'T', 'N', NNB, NNB, N-NNB-CUT, CONE,
$ A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
$ CZERO, WORK( U11+1, 1 ), N+NB+1 )
*
* L11 = L11**T * invD1 * L11 + U01**T * invD * U01
*
DO I = 1, NNB
DO J = 1, I
A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
END DO
END DO
*
* L01 = L22**T * invD2 * L21
*
CALL ZTRMM( 'L', UPLO, 'T', 'U', N-NNB-CUT, NNB, CONE,
$ A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
$ N+NB+1 )
*
* Update L21
*
DO I = 1, N-CUT-NNB
DO J = 1, NNB
A( CUT+NNB+I, CUT+J ) = WORK( I, J )
END DO
END DO
*
ELSE
*
* L11 = L11**T * invD1 * L11
*
DO I = 1, NNB
DO J = 1, I
A( CUT+I, CUT+J ) = WORK( U11+I, J )
END DO
END DO
END IF
*
* Next Block
*
CUT = CUT + NNB
*
END DO
*
* Apply PERMUTATIONS P and P**T:
* P * inv(L**T) * inv(D) * inv(L) * P**T.
* Interchange rows and columns I and IPIV(I) in reverse order
* from the formation order of IPIV vector for Lower case.
*
* ( We can use a loop over IPIV with increment -1,
* since the ABS value of IPIV(I) represents the row (column)
* index of the interchange with row (column) i in both 1x1
* and 2x2 pivot cases, i.e. we don't need separate code branches
* for 1x1 and 2x2 pivot cases )
*
DO I = N, 1, -1
IP = ABS( IPIV( I ) )
IF( IP.NE.I ) THEN
IF (I .LT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, I ,IP )
IF (I .GT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, IP ,I )
END IF
END DO
*
END IF
*
RETURN
*
* End of ZSYTRI_3X
*
END
|