summaryrefslogtreecommitdiff
path: root/SRC/zpteqr.f
blob: 90f21b32b941861da206b817b84c9361a30f9332 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
*> \brief \b ZPTEQR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZPTEQR + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpteqr.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpteqr.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpteqr.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          COMPZ
*       INTEGER            INFO, LDZ, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * ), E( * ), WORK( * )
*       COMPLEX*16         Z( LDZ, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZPTEQR computes all eigenvalues and, optionally, eigenvectors of a
*> symmetric positive definite tridiagonal matrix by first factoring the
*> matrix using DPTTRF and then calling ZBDSQR to compute the singular
*> values of the bidiagonal factor.
*>
*> This routine computes the eigenvalues of the positive definite
*> tridiagonal matrix to high relative accuracy.  This means that if the
*> eigenvalues range over many orders of magnitude in size, then the
*> small eigenvalues and corresponding eigenvectors will be computed
*> more accurately than, for example, with the standard QR method.
*>
*> The eigenvectors of a full or band positive definite Hermitian matrix
*> can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to
*> reduce this matrix to tridiagonal form.  (The reduction to
*> tridiagonal form, however, may preclude the possibility of obtaining
*> high relative accuracy in the small eigenvalues of the original
*> matrix, if these eigenvalues range over many orders of magnitude.)
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] COMPZ
*> \verbatim
*>          COMPZ is CHARACTER*1
*>          = 'N':  Compute eigenvalues only.
*>          = 'V':  Compute eigenvectors of original Hermitian
*>                  matrix also.  Array Z contains the unitary matrix
*>                  used to reduce the original matrix to tridiagonal
*>                  form.
*>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          On entry, the n diagonal elements of the tridiagonal matrix.
*>          On normal exit, D contains the eigenvalues, in descending
*>          order.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
*>          matrix.
*>          On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*>          Z is COMPLEX*16 array, dimension (LDZ, N)
*>          On entry, if COMPZ = 'V', the unitary matrix used in the
*>          reduction to tridiagonal form.
*>          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
*>          original Hermitian matrix;
*>          if COMPZ = 'I', the orthonormal eigenvectors of the
*>          tridiagonal matrix.
*>          If INFO > 0 on exit, Z contains the eigenvectors associated
*>          with only the stored eigenvalues.
*>          If  COMPZ = 'N', then Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= 1, and if
*>          COMPZ = 'V' or 'I', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (4*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if INFO = i, and i is:
*>                <= N  the Cholesky factorization of the matrix could
*>                      not be performed because the i-th principal minor
*>                      was not positive definite.
*>                > N   the SVD algorithm failed to converge;
*>                      if INFO = N+i, i off-diagonal elements of the
*>                      bidiagonal factor did not converge to zero.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16OTHERcomputational
*
*  =====================================================================
      SUBROUTINE ZPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), WORK( * )
      COMPLEX*16         Z( LDZ, * )
*     ..
*
*  ====================================================================
*
*     .. Parameters ..
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DPTTRF, XERBLA, ZBDSQR, ZLASET
*     ..
*     .. Local Arrays ..
      COMPLEX*16         C( 1, 1 ), VT( 1, 1 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICOMPZ, NRU
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = -1
      END IF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
     $         N ) ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPTEQR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( ICOMPZ.GT.0 )
     $      Z( 1, 1 ) = CONE
         RETURN
      END IF
      IF( ICOMPZ.EQ.2 )
     $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
*
*     Call DPTTRF to factor the matrix.
*
      CALL DPTTRF( N, D, E, INFO )
      IF( INFO.NE.0 )
     $   RETURN
      DO 10 I = 1, N
         D( I ) = SQRT( D( I ) )
   10 CONTINUE
      DO 20 I = 1, N - 1
         E( I ) = E( I )*D( I )
   20 CONTINUE
*
*     Call ZBDSQR to compute the singular values/vectors of the
*     bidiagonal factor.
*
      IF( ICOMPZ.GT.0 ) THEN
         NRU = N
      ELSE
         NRU = 0
      END IF
      CALL ZBDSQR( 'Lower', N, 0, NRU, 0, D, E, VT, 1, Z, LDZ, C, 1,
     $             WORK, INFO )
*
*     Square the singular values.
*
      IF( INFO.EQ.0 ) THEN
         DO 30 I = 1, N
            D( I ) = D( I )*D( I )
   30    CONTINUE
      ELSE
         INFO = N + INFO
      END IF
*
      RETURN
*
*     End of ZPTEQR
*
      END