summaryrefslogtreecommitdiff
path: root/SRC/zpbsv.f
blob: 8df5915de1b7c5301e1425a10b29a35a87b71c0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
*> \brief <b> ZPBSV computes the solution to system of linear equations A * X = B for OTHER matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZPBSV + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbsv.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbsv.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbsv.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZPBSV( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, KD, LDAB, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         AB( LDAB, * ), B( LDB, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZPBSV computes the solution to a complex system of linear equations
*>    A * X = B,
*> where A is an N-by-N Hermitian positive definite band matrix and X
*> and B are N-by-NRHS matrices.
*>
*> The Cholesky decomposition is used to factor A as
*>    A = U**H * U,  if UPLO = 'U', or
*>    A = L * L**H,  if UPLO = 'L',
*> where U is an upper triangular band matrix, and L is a lower
*> triangular band matrix, with the same number of superdiagonals or
*> subdiagonals as A.  The factored form of A is then used to solve the
*> system of equations A * X = B.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is COMPLEX*16 array, dimension (LDAB,N)
*>          On entry, the upper or lower triangle of the Hermitian band
*>          matrix A, stored in the first KD+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
*>          See below for further details.
*>
*>          On exit, if INFO = 0, the triangular factor U or L from the
*>          Cholesky factorization A = U**H *U or A = L*L**H of the band
*>          matrix A, in the same storage format as A.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          On entry, the N-by-NRHS right hand side matrix B.
*>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, the leading minor of order i of A is not
*>                positive definite, so the factorization could not be
*>                completed, and the solution has not been computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16OTHERsolve
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The band storage scheme is illustrated by the following example, when
*>  N = 6, KD = 2, and UPLO = 'U':
*>
*>  On entry:                       On exit:
*>
*>      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
*>
*>  Similarly, if UPLO = 'L' the format of A is as follows:
*>
*>  On entry:                       On exit:
*>
*>     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
*>     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
*>     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
*>
*>  Array elements marked * are not used by the routine.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZPBSV( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
*
*  -- LAPACK driver routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, KD, LDAB, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      COMPLEX*16         AB( LDAB, * ), B( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZPBTRF, ZPBTRS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KD.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPBSV ', -INFO )
         RETURN
      END IF
*
*     Compute the Cholesky factorization A = U**H *U or A = L*L**H.
*
      CALL ZPBTRF( UPLO, N, KD, AB, LDAB, INFO )
      IF( INFO.EQ.0 ) THEN
*
*        Solve the system A*X = B, overwriting B with X.
*
         CALL ZPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
*
      END IF
      RETURN
*
*     End of ZPBSV
*
      END