1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
SUBROUTINE ZLAUUM( UPLO, N, A, LDA, INFO )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * )
* ..
*
* Purpose
* =======
*
* ZLAUUM computes the product U * U**H or L**H * L, where the triangular
* factor U or L is stored in the upper or lower triangular part of
* the array A.
*
* If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
* overwriting the factor U in A.
* If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
* overwriting the factor L in A.
*
* This is the blocked form of the algorithm, calling Level 3 BLAS.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the triangular factor stored in the array A
* is upper or lower triangular:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the triangular factor U or L. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the triangular factor U or L.
* On exit, if UPLO = 'U', the upper triangle of A is
* overwritten with the upper triangle of the product U * U**H;
* if UPLO = 'L', the lower triangle of A is overwritten with
* the lower triangle of the product L**H * L.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IB, NB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEMM, ZHERK, ZLAUU2, ZTRMM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLAUUM', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine the block size for this environment.
*
NB = ILAENV( 1, 'ZLAUUM', UPLO, N, -1, -1, -1 )
*
IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
* Use unblocked code
*
CALL ZLAUU2( UPLO, N, A, LDA, INFO )
ELSE
*
* Use blocked code
*
IF( UPPER ) THEN
*
* Compute the product U * U**H.
*
DO 10 I = 1, N, NB
IB = MIN( NB, N-I+1 )
CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
$ 'Non-unit', I-1, IB, CONE, A( I, I ), LDA,
$ A( 1, I ), LDA )
CALL ZLAUU2( 'Upper', IB, A( I, I ), LDA, INFO )
IF( I+IB.LE.N ) THEN
CALL ZGEMM( 'No transpose', 'Conjugate transpose',
$ I-1, IB, N-I-IB+1, CONE, A( 1, I+IB ),
$ LDA, A( I, I+IB ), LDA, CONE, A( 1, I ),
$ LDA )
CALL ZHERK( 'Upper', 'No transpose', IB, N-I-IB+1,
$ ONE, A( I, I+IB ), LDA, ONE, A( I, I ),
$ LDA )
END IF
10 CONTINUE
ELSE
*
* Compute the product L**H * L.
*
DO 20 I = 1, N, NB
IB = MIN( NB, N-I+1 )
CALL ZTRMM( 'Left', 'Lower', 'Conjugate transpose',
$ 'Non-unit', IB, I-1, CONE, A( I, I ), LDA,
$ A( I, 1 ), LDA )
CALL ZLAUU2( 'Lower', IB, A( I, I ), LDA, INFO )
IF( I+IB.LE.N ) THEN
CALL ZGEMM( 'Conjugate transpose', 'No transpose', IB,
$ I-1, N-I-IB+1, CONE, A( I+IB, I ), LDA,
$ A( I+IB, 1 ), LDA, CONE, A( I, 1 ), LDA )
CALL ZHERK( 'Lower', 'Conjugate transpose', IB,
$ N-I-IB+1, ONE, A( I+IB, I ), LDA, ONE,
$ A( I, I ), LDA )
END IF
20 CONTINUE
END IF
END IF
*
RETURN
*
* End of ZLAUUM
*
END
|