1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
|
*> \brief \b ZLATBS solves a triangular banded system of equations.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLATBS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatbs.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatbs.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatbs.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
* SCALE, CNORM, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, NORMIN, TRANS, UPLO
* INTEGER INFO, KD, LDAB, N
* DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
* DOUBLE PRECISION CNORM( * )
* COMPLEX*16 AB( LDAB, * ), X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLATBS solves one of the triangular systems
*>
*> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
*>
*> with scaling to prevent overflow, where A is an upper or lower
*> triangular band matrix. Here A**T denotes the transpose of A, x and b
*> are n-element vectors, and s is a scaling factor, usually less than
*> or equal to 1, chosen so that the components of x will be less than
*> the overflow threshold. If the unscaled problem will not cause
*> overflow, the Level 2 BLAS routine ZTBSV is called. If the matrix A
*> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
*> non-trivial solution to A*x = 0 is returned.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A is upper or lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the operation applied to A.
*> = 'N': Solve A * x = s*b (No transpose)
*> = 'T': Solve A**T * x = s*b (Transpose)
*> = 'C': Solve A**H * x = s*b (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in] NORMIN
*> \verbatim
*> NORMIN is CHARACTER*1
*> Specifies whether CNORM has been set or not.
*> = 'Y': CNORM contains the column norms on entry
*> = 'N': CNORM is not set on entry. On exit, the norms will
*> be computed and stored in CNORM.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of subdiagonals or superdiagonals in the
*> triangular matrix A. KD >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*> AB is COMPLEX*16 array, dimension (LDAB,N)
*> The upper or lower triangular band matrix A, stored in the
*> first KD+1 rows of the array. The j-th column of A is stored
*> in the j-th column of the array AB as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KD+1.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (N)
*> On entry, the right hand side b of the triangular system.
*> On exit, X is overwritten by the solution vector x.
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION
*> The scaling factor s for the triangular system
*> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
*> If SCALE = 0, the matrix A is singular or badly scaled, and
*> the vector x is an exact or approximate solution to A*x = 0.
*> \endverbatim
*>
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is DOUBLE PRECISION array, dimension (N)
*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> A rough bound on x is computed; if that is less than overflow, ZTBSV
*> is called, otherwise, specific code is used which checks for possible
*> overflow or divide-by-zero at every operation.
*>
*> A columnwise scheme is used for solving A*x = b. The basic algorithm
*> if A is lower triangular is
*>
*> x[1:n] := b[1:n]
*> for j = 1, ..., n
*> x(j) := x(j) / A(j,j)
*> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
*> end
*>
*> Define bounds on the components of x after j iterations of the loop:
*> M(j) = bound on x[1:j]
*> G(j) = bound on x[j+1:n]
*> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*>
*> Then for iteration j+1 we have
*> M(j+1) <= G(j) / | A(j+1,j+1) |
*> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
*> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*>
*> where CNORM(j+1) is greater than or equal to the infinity-norm of
*> column j+1 of A, not counting the diagonal. Hence
*>
*> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
*> 1<=i<=j
*> and
*>
*> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
*> 1<=i< j
*>
*> Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTBSV if the
*> reciprocal of the largest M(j), j=1,..,n, is larger than
*> max(underflow, 1/overflow).
*>
*> The bound on x(j) is also used to determine when a step in the
*> columnwise method can be performed without fear of overflow. If
*> the computed bound is greater than a large constant, x is scaled to
*> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
*> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*>
*> Similarly, a row-wise scheme is used to solve A**T *x = b or
*> A**H *x = b. The basic algorithm for A upper triangular is
*>
*> for j = 1, ..., n
*> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
*> end
*>
*> We simultaneously compute two bounds
*> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
*> M(j) = bound on x(i), 1<=i<=j
*>
*> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
*> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
*> Then the bound on x(j) is
*>
*> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*>
*> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
*> 1<=i<=j
*>
*> and we can safely call ZTBSV if 1/M(n) and 1/G(n) are both greater
*> than max(underflow, 1/overflow).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
$ SCALE, CNORM, INFO )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORMIN, TRANS, UPLO
INTEGER INFO, KD, LDAB, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
DOUBLE PRECISION CNORM( * )
COMPLEX*16 AB( LDAB, * ), X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
$ TWO = 2.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
INTEGER I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
$ XBND, XJ, XMAX
COMPLEX*16 CSUMJ, TJJS, USCAL, ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX, IZAMAX
DOUBLE PRECISION DLAMCH, DZASUM
COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
EXTERNAL LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
$ ZDOTU, ZLADIV
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTBSV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1, CABS2
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
$ ABS( DIMAG( ZDUM ) / 2.D0 )
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
*
* Test the input parameters.
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
$ LSAME( NORMIN, 'N' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( KD.LT.0 ) THEN
INFO = -6
ELSE IF( LDAB.LT.KD+1 ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLATBS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine machine dependent parameters to control overflow.
*
SMLNUM = DLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SMLNUM / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
SCALE = ONE
*
IF( LSAME( NORMIN, 'N' ) ) THEN
*
* Compute the 1-norm of each column, not including the diagonal.
*
IF( UPPER ) THEN
*
* A is upper triangular.
*
DO 10 J = 1, N
JLEN = MIN( KD, J-1 )
CNORM( J ) = DZASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
10 CONTINUE
ELSE
*
* A is lower triangular.
*
DO 20 J = 1, N
JLEN = MIN( KD, N-J )
IF( JLEN.GT.0 ) THEN
CNORM( J ) = DZASUM( JLEN, AB( 2, J ), 1 )
ELSE
CNORM( J ) = ZERO
END IF
20 CONTINUE
END IF
END IF
*
* Scale the column norms by TSCAL if the maximum element in CNORM is
* greater than BIGNUM/2.
*
IMAX = IDAMAX( N, CNORM, 1 )
TMAX = CNORM( IMAX )
IF( TMAX.LE.BIGNUM*HALF ) THEN
TSCAL = ONE
ELSE
TSCAL = HALF / ( SMLNUM*TMAX )
CALL DSCAL( N, TSCAL, CNORM, 1 )
END IF
*
* Compute a bound on the computed solution vector to see if the
* Level 2 BLAS routine ZTBSV can be used.
*
XMAX = ZERO
DO 30 J = 1, N
XMAX = MAX( XMAX, CABS2( X( J ) ) )
30 CONTINUE
XBND = XMAX
IF( NOTRAN ) THEN
*
* Compute the growth in A * x = b.
*
IF( UPPER ) THEN
JFIRST = N
JLAST = 1
JINC = -1
MAIND = KD + 1
ELSE
JFIRST = 1
JLAST = N
JINC = 1
MAIND = 1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 60
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, G(0) = max{x(i), i=1,...,n}.
*
GROW = HALF / MAX( XBND, SMLNUM )
XBND = GROW
DO 40 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 60
*
TJJS = AB( MAIND, J )
TJJ = CABS1( TJJS )
*
IF( TJJ.GE.SMLNUM ) THEN
*
* M(j) = G(j-1) / abs(A(j,j))
*
XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
ELSE
*
* M(j) could overflow, set XBND to 0.
*
XBND = ZERO
END IF
*
IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
ELSE
*
* G(j) could overflow, set GROW to 0.
*
GROW = ZERO
END IF
40 CONTINUE
GROW = XBND
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
DO 50 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 60
*
* G(j) = G(j-1)*( 1 + CNORM(j) )
*
GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
50 CONTINUE
END IF
60 CONTINUE
*
ELSE
*
* Compute the growth in A**T * x = b or A**H * x = b.
*
IF( UPPER ) THEN
JFIRST = 1
JLAST = N
JINC = 1
MAIND = KD + 1
ELSE
JFIRST = N
JLAST = 1
JINC = -1
MAIND = 1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 90
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, M(0) = max{x(i), i=1,...,n}.
*
GROW = HALF / MAX( XBND, SMLNUM )
XBND = GROW
DO 70 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 90
*
* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
*
XJ = ONE + CNORM( J )
GROW = MIN( GROW, XBND / XJ )
*
TJJS = AB( MAIND, J )
TJJ = CABS1( TJJS )
*
IF( TJJ.GE.SMLNUM ) THEN
*
* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
*
IF( XJ.GT.TJJ )
$ XBND = XBND*( TJJ / XJ )
ELSE
*
* M(j) could overflow, set XBND to 0.
*
XBND = ZERO
END IF
70 CONTINUE
GROW = MIN( GROW, XBND )
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
DO 80 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 90
*
* G(j) = ( 1 + CNORM(j) )*G(j-1)
*
XJ = ONE + CNORM( J )
GROW = GROW / XJ
80 CONTINUE
END IF
90 CONTINUE
END IF
*
IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
*
* Use the Level 2 BLAS solve if the reciprocal of the bound on
* elements of X is not too small.
*
CALL ZTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
ELSE
*
* Use a Level 1 BLAS solve, scaling intermediate results.
*
IF( XMAX.GT.BIGNUM*HALF ) THEN
*
* Scale X so that its components are less than or equal to
* BIGNUM in absolute value.
*
SCALE = ( BIGNUM*HALF ) / XMAX
CALL ZDSCAL( N, SCALE, X, 1 )
XMAX = BIGNUM
ELSE
XMAX = XMAX*TWO
END IF
*
IF( NOTRAN ) THEN
*
* Solve A * x = b
*
DO 120 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
*
XJ = CABS1( X( J ) )
IF( NOUNIT ) THEN
TJJS = AB( MAIND, J )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 110
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by 1/b(j).
*
REC = ONE / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = ZLADIV( X( J ), TJJS )
XJ = CABS1( X( J ) )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
* to avoid overflow when dividing by A(j,j).
*
REC = ( TJJ*BIGNUM ) / XJ
IF( CNORM( J ).GT.ONE ) THEN
*
* Scale by 1/CNORM(j) to avoid overflow when
* multiplying x(j) times column j.
*
REC = REC / CNORM( J )
END IF
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = ZLADIV( X( J ), TJJS )
XJ = CABS1( X( J ) )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A*x = 0.
*
DO 100 I = 1, N
X( I ) = ZERO
100 CONTINUE
X( J ) = ONE
XJ = ONE
SCALE = ZERO
XMAX = ZERO
END IF
110 CONTINUE
*
* Scale x if necessary to avoid overflow when adding a
* multiple of column j of A.
*
IF( XJ.GT.ONE ) THEN
REC = ONE / XJ
IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
*
* Scale x by 1/(2*abs(x(j))).
*
REC = REC*HALF
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
END IF
ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
*
* Scale x by 1/2.
*
CALL ZDSCAL( N, HALF, X, 1 )
SCALE = SCALE*HALF
END IF
*
IF( UPPER ) THEN
IF( J.GT.1 ) THEN
*
* Compute the update
* x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
* x(j)* A(max(1,j-kd):j-1,j)
*
JLEN = MIN( KD, J-1 )
CALL ZAXPY( JLEN, -X( J )*TSCAL,
$ AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
I = IZAMAX( J-1, X, 1 )
XMAX = CABS1( X( I ) )
END IF
ELSE IF( J.LT.N ) THEN
*
* Compute the update
* x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
* x(j) * A(j+1:min(j+kd,n),j)
*
JLEN = MIN( KD, N-J )
IF( JLEN.GT.0 )
$ CALL ZAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
$ X( J+1 ), 1 )
I = J + IZAMAX( N-J, X( J+1 ), 1 )
XMAX = CABS1( X( I ) )
END IF
120 CONTINUE
*
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
* Solve A**T * x = b
*
DO 170 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
XJ = CABS1( X( J ) )
USCAL = TSCAL
REC = ONE / MAX( XMAX, ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
TJJS = AB( MAIND, J )*TSCAL
ELSE
TJJS = TSCAL
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
USCAL = ZLADIV( USCAL, TJJS )
END IF
IF( REC.LT.ONE ) THEN
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
*
CSUMJ = ZERO
IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call ZDOTU to perform the dot product.
*
IF( UPPER ) THEN
JLEN = MIN( KD, J-1 )
CSUMJ = ZDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
$ X( J-JLEN ), 1 )
ELSE
JLEN = MIN( KD, N-J )
IF( JLEN.GT.1 )
$ CSUMJ = ZDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
$ 1 )
END IF
ELSE
*
* Otherwise, use in-line code for the dot product.
*
IF( UPPER ) THEN
JLEN = MIN( KD, J-1 )
DO 130 I = 1, JLEN
CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
$ X( J-JLEN-1+I )
130 CONTINUE
ELSE
JLEN = MIN( KD, N-J )
DO 140 I = 1, JLEN
CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
140 CONTINUE
END IF
END IF
*
IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
*
* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
X( J ) = X( J ) - CSUMJ
XJ = CABS1( X( J ) )
IF( NOUNIT ) THEN
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJS = AB( MAIND, J )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 160
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = ZLADIV( X( J ), TJJS )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = ZLADIV( X( J ), TJJS )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0 and compute a solution to A**T *x = 0.
*
DO 150 I = 1, N
X( I ) = ZERO
150 CONTINUE
X( J ) = ONE
SCALE = ZERO
XMAX = ZERO
END IF
160 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
* product has already been divided by 1/A(j,j).
*
X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
END IF
XMAX = MAX( XMAX, CABS1( X( J ) ) )
170 CONTINUE
*
ELSE
*
* Solve A**H * x = b
*
DO 220 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
XJ = CABS1( X( J ) )
USCAL = TSCAL
REC = ONE / MAX( XMAX, ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
ELSE
TJJS = TSCAL
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
USCAL = ZLADIV( USCAL, TJJS )
END IF
IF( REC.LT.ONE ) THEN
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
*
CSUMJ = ZERO
IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call ZDOTC to perform the dot product.
*
IF( UPPER ) THEN
JLEN = MIN( KD, J-1 )
CSUMJ = ZDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
$ X( J-JLEN ), 1 )
ELSE
JLEN = MIN( KD, N-J )
IF( JLEN.GT.1 )
$ CSUMJ = ZDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
$ 1 )
END IF
ELSE
*
* Otherwise, use in-line code for the dot product.
*
IF( UPPER ) THEN
JLEN = MIN( KD, J-1 )
DO 180 I = 1, JLEN
CSUMJ = CSUMJ + ( DCONJG( AB( KD+I-JLEN, J ) )*
$ USCAL )*X( J-JLEN-1+I )
180 CONTINUE
ELSE
JLEN = MIN( KD, N-J )
DO 190 I = 1, JLEN
CSUMJ = CSUMJ + ( DCONJG( AB( I+1, J ) )*USCAL )
$ *X( J+I )
190 CONTINUE
END IF
END IF
*
IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
*
* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
X( J ) = X( J ) - CSUMJ
XJ = CABS1( X( J ) )
IF( NOUNIT ) THEN
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 210
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = ZLADIV( X( J ), TJJS )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = ZLADIV( X( J ), TJJS )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0 and compute a solution to A**H *x = 0.
*
DO 200 I = 1, N
X( I ) = ZERO
200 CONTINUE
X( J ) = ONE
SCALE = ZERO
XMAX = ZERO
END IF
210 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
* product has already been divided by 1/A(j,j).
*
X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
END IF
XMAX = MAX( XMAX, CABS1( X( J ) ) )
220 CONTINUE
END IF
SCALE = SCALE / TSCAL
END IF
*
* Scale the column norms by 1/TSCAL for return.
*
IF( TSCAL.NE.ONE ) THEN
CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
END IF
*
RETURN
*
* End of ZLATBS
*
END
|