summaryrefslogtreecommitdiff
path: root/SRC/zlasyf_aa.f
blob: 8e28d4f244e7ccbe28ea162100bd599f5466ba53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
*> \brief \b ZLASYF_AA
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLASYF_AA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_aa.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_aa.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_aa.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
*                             H, LDH, WORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            J1, M, NB, LDA, LDH, INFO
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX*16         A( LDA, * ), H( LDH, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLATRF_AA factorizes a panel of a complex symmetric matrix A using
*> the Aasen's algorithm. The panel consists of a set of NB rows of A
*> when UPLO is U, or a set of NB columns when UPLO is L.
*>
*> In order to factorize the panel, the Aasen's algorithm requires the
*> last row, or column, of the previous panel. The first row, or column,
*> of A is set to be the first row, or column, of an identity matrix,
*> which is used to factorize the first panel.
*>
*> The resulting J-th row of U, or J-th column of L, is stored in the
*> (J-1)-th row, or column, of A (without the unit diagonals), while
*> the diagonal and subdiagonal of A are overwritten by those of T.
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] J1
*> \verbatim
*>          J1 is INTEGER
*>          The location of the first row, or column, of the panel
*>          within the submatrix of A, passed to this routine, e.g.,
*>          when called by ZSYTRF_AA, for the first panel, J1 is 1,
*>          while for the remaining panels, J1 is 2.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The dimension of the submatrix. M >= 0.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          The dimension of the panel to be facotorized.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,M) for
*>          the first panel, while dimension (LDA,M+1) for the
*>          remaining panels.
*>
*>          On entry, A contains the last row, or column, of
*>          the previous panel, and the trailing submatrix of A
*>          to be factorized, except for the first panel, only
*>          the panel is passed.
*>
*>          On exit, the leading panel is factorized.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (M)
*>          Details of the row and column interchanges,
*>          the row and column k were interchanged with the row and
*>          column IPIV(k).
*> \endverbatim
*>
*> \param[in,out] H
*> \verbatim
*>          H is COMPLEX*16 workspace, dimension (LDH,NB).
*>
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*>          LDH is INTEGER
*>          The leading dimension of the workspace H. LDH >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 workspace, dimension (M).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
*>                has been completed, but the block diagonal matrix D is
*>                exactly singular, and division by zero will occur if it
*>                is used to solve a system of equations.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16SYcomputational
*
*  =====================================================================
      SUBROUTINE ZLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
     $                         H, LDH, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            M, NB, J1, LDA, LDH, INFO
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * ), H( LDH, * ), WORK( * )
*     ..
*
*  =====================================================================
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*
*     .. Local Scalars ..
      INTEGER            J, K, K1, I1, I2
      COMPLEX*16         PIV, ALPHA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX, ILAENV
      EXTERNAL           LSAME, ILAENV, IZAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      J = 1
*
*     K1 is the first column of the panel to be factorized
*     i.e.,  K1 is 2 for the first block column, and 1 for the rest of the blocks
*
      K1 = (2-J1)+1
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        .....................................................
*        Factorize A as U**T*D*U using the upper triangle of A
*        .....................................................
*
 10      CONTINUE
         IF ( J.GT.MIN(M, NB) )
     $      GO TO 20
*
*        K is the column to be factorized
*         when being called from ZSYTRF_AA,
*         > for the first block column, J1 is 1, hence J1+J-1 is J,
*         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
*
         K = J1+J-1
*
*        H(J:M, J) := A(J, J:M) - H(J:M, 1:(J-1)) * L(J1:(J-1), J),
*         where H(J:M, J) has been initialized to be A(J, J:M)
*
         IF( K.GT.2 ) THEN
*
*        K is the column to be factorized
*         > for the first block column, K is J, skipping the first two
*           columns
*         > for the rest of the columns, K is J+1, skipping only the
*           first column
*
            CALL ZGEMV( 'No transpose', M-J+1, J-K1,
     $                 -ONE, H( J, K1 ), LDH,
     $                       A( 1, J ), 1,
     $                  ONE, H( J, J ), 1 )
         END IF
*
*        Copy H(i:M, i) into WORK
*
         CALL ZCOPY( M-J+1, H( J, J ), 1, WORK( 1 ), 1 )
*
         IF( J.GT.K1 ) THEN
*
*           Compute WORK := WORK - L(J-1, J:M) * T(J-1,J),
*            where A(J-1, J) stores T(J-1, J) and A(J-2, J:M) stores U(J-1, J:M)
*
            ALPHA = -A( K-1, J )
            CALL ZAXPY( M-J+1, ALPHA, A( K-2, J ), LDA, WORK( 1 ), 1 )
         END IF
*
*        Set A(J, J) = T(J, J)
*
         A( K, J ) = WORK( 1 )
*
         IF( J.LT.M ) THEN
*
*           Compute WORK(2:M) = T(J, J) L(J, (J+1):M)
*            where A(J, J) stores T(J, J) and A(J-1, (J+1):M) stores U(J, (J+1):M)
*
            IF( K.GT.1 ) THEN
               ALPHA = -A( K, J )
               CALL ZAXPY( M-J, ALPHA, A( K-1, J+1 ), LDA,
     $                                 WORK( 2 ), 1 )
            ENDIF
*
*           Find max(|WORK(2:M)|)
*
            I2 = IZAMAX( M-J, WORK( 2 ), 1 ) + 1
            PIV = WORK( I2 )
*
*           Apply symmetric pivot
*
            IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
*
*              Swap WORK(I1) and WORK(I2)
*
               I1 = 2
               WORK( I2 ) = WORK( I1 )
               WORK( I1 ) = PIV
*
*              Swap A(I1, I1+1:M) with A(I1+1:M, I2)
*
               I1 = I1+J-1
               I2 = I2+J-1
               CALL ZSWAP( I2-I1-1, A( J1+I1-1, I1+1 ), LDA,
     $                              A( J1+I1, I2 ), 1 )
*
*              Swap A(I1, I2+1:M) with A(I2, I2+1:M)
*
               CALL ZSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
     $                           A( J1+I2-1, I2+1 ), LDA )
*
*              Swap A(I1, I1) with A(I2,I2)
*
               PIV = A( I1+J1-1, I1 )
               A( J1+I1-1, I1 ) = A( J1+I2-1, I2 )
               A( J1+I2-1, I2 ) = PIV
*
*              Swap H(I1, 1:J1) with H(I2, 1:J1)
*
               CALL ZSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
               IPIV( I1 ) = I2
*
               IF( I1.GT.(K1-1) ) THEN
*
*                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
*                  skipping the first column
*
                  CALL ZSWAP( I1-K1+1, A( 1, I1 ), 1,
     $                                 A( 1, I2 ), 1 )
               END IF
            ELSE
               IPIV( J+1 ) = J+1
            ENDIF
*
*           Set A(J, J+1) = T(J, J+1)
*
            A( K, J+1 ) = WORK( 2 )
            IF( (A( K, J ).EQ.ZERO ) .AND. (A( K, J+1 ).EQ.ZERO) .AND.
     $          ((K.EQ.1) .OR. (A( K-1, J ).EQ.ZERO)) ) THEN
                IF(INFO .EQ. 0) THEN
                    INFO = J
                ENDIF
            END IF
*
            IF( J.LT.NB ) THEN
*
*              Copy A(J+1:M, J+1) into H(J:M, J),
*
               CALL ZCOPY( M-J, A( K+1, J+1 ), LDA,
     $                          H( J+1, J+1 ), 1 )
            END IF
*
*           Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
*            where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
*
            IF( A( K, J+1 ).NE.ZERO ) THEN
               ALPHA = ONE / A( K, J+1 )
               CALL ZCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
               CALL ZSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
            ELSE
               CALL ZLASET( 'Full', 1, M-J-1, ZERO, ZERO,
     $                      A( K, J+2 ), LDA)
            END IF
         ELSE
            IF( (A( K, J ).EQ.ZERO) .AND.
     $          ((K.EQ.1) .OR. (A( J-1, J ).EQ.ZERO)) ) THEN
               IF (INFO.EQ.0) THEN
                  INFO = J
               END IF
            END IF
         END IF
         J = J + 1
         GO TO 10
 20      CONTINUE
*
      ELSE
*
*        .....................................................
*        Factorize A as L*D*L**T using the lower triangle of A
*        .....................................................
*
 30      CONTINUE
         IF( J.GT.MIN( M, NB ) )
     $      GO TO 40
*
*        K is the column to be factorized
*         when being called from ZSYTRF_AA,
*         > for the first block column, J1 is 1, hence J1+J-1 is J,
*         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
*
         K = J1+J-1
*
*        H(J:M, J) := A(J:M, J) - H(J:M, 1:(J-1)) * L(J, J1:(J-1))^T,
*         where H(J:M, J) has been initialized to be A(J:M, J)
*
         IF( K.GT.2 ) THEN
*
*        K is the column to be factorized
*         > for the first block column, K is J, skipping the first two
*           columns
*         > for the rest of the columns, K is J+1, skipping only the
*           first column
*
            CALL ZGEMV( 'No transpose', M-J+1, J-K1,
     $                 -ONE, H( J, K1 ), LDH,
     $                       A( J, 1 ), LDA,
     $                  ONE, H( J, J ), 1 )
         END IF
*
*        Copy H(J:M, J) into WORK
*
         CALL ZCOPY( M-J+1, H( J, J ), 1, WORK( 1 ), 1 )
*
         IF( J.GT.K1 ) THEN
*
*           Compute WORK := WORK - L(J:M, J-1) * T(J-1,J),
*            where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1)
*
            ALPHA = -A( J, K-1 )
            CALL ZAXPY( M-J+1, ALPHA, A( J, K-2 ), 1, WORK( 1 ), 1 )
         END IF
*
*        Set A(J, J) = T(J, J)
*
         A( J, K ) = WORK( 1 )
*
         IF( J.LT.M ) THEN
*
*           Compute WORK(2:M) = T(J, J) L((J+1):M, J)
*            where A(J, J) = T(J, J) and A((J+1):M, J-1) = L((J+1):M, J)
*
            IF( K.GT.1 ) THEN
               ALPHA = -A( J, K )
               CALL ZAXPY( M-J, ALPHA, A( J+1, K-1 ), 1,
     $                                 WORK( 2 ), 1 )
            ENDIF
*
*           Find max(|WORK(2:M)|)
*
            I2 = IZAMAX( M-J, WORK( 2 ), 1 ) + 1
            PIV = WORK( I2 )
*
*           Apply symmetric pivot
*
            IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
*
*              Swap WORK(I1) and WORK(I2)
*
               I1 = 2
               WORK( I2 ) = WORK( I1 )
               WORK( I1 ) = PIV
*
*              Swap A(I1+1:M, I1) with A(I2, I1+1:M)
*
               I1 = I1+J-1
               I2 = I2+J-1
               CALL ZSWAP( I2-I1-1, A( I1+1, J1+I1-1 ), 1,
     $                              A( I2, J1+I1 ), LDA )
*
*              Swap A(I2+1:M, I1) with A(I2+1:M, I2)
*
               CALL ZSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
     $                           A( I2+1, J1+I2-1 ), 1 )
*
*              Swap A(I1, I1) with A(I2, I2)
*
               PIV = A( I1, J1+I1-1 )
               A( I1, J1+I1-1 ) = A( I2, J1+I2-1 )
               A( I2, J1+I2-1 ) = PIV
*
*              Swap H(I1, I1:J1) with H(I2, I2:J1)
*
               CALL ZSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
               IPIV( I1 ) = I2
*
               IF( I1.GT.(K1-1) ) THEN
*
*                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
*                  skipping the first column
*
                  CALL ZSWAP( I1-K1+1, A( I1, 1 ), LDA,
     $                                 A( I2, 1 ), LDA )
               END IF
            ELSE
               IPIV( J+1 ) = J+1
            ENDIF
*
*           Set A(J+1, J) = T(J+1, J)
*
            A( J+1, K ) = WORK( 2 )
            IF( (A( J, K ).EQ.ZERO) .AND. (A( J+1, K ).EQ.ZERO) .AND.
     $          ((K.EQ.1) .OR. (A( J, K-1 ).EQ.ZERO)) ) THEN
                IF (INFO .EQ. 0)
     $              INFO = J
            END IF
*
            IF( J.LT.NB ) THEN
*
*              Copy A(J+1:M, J+1) into H(J+1:M, J),
*
               CALL ZCOPY( M-J, A( J+1, K+1 ), 1,
     $                          H( J+1, J+1 ), 1 )
            END IF
*
*           Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
*            where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
*
            IF( A( J+1, K ).NE.ZERO ) THEN
               ALPHA = ONE / A( J+1, K )
               CALL ZCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
               CALL ZSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
            ELSE
               CALL ZLASET( 'Full', M-J-1, 1, ZERO, ZERO,
     $                      A( J+2, K ), LDA )
            END IF
         ELSE
            IF( (A( J, K ).EQ.ZERO) .AND.
     $          ((K.EQ.1) .OR. (A( J, K-1 ).EQ.ZERO)) ) THEN
               IF (INFO.EQ.0) THEN
                  INFO = J
               END IF
            END IF
         END IF
         J = J + 1
         GO TO 30
 40      CONTINUE
      END IF
      RETURN
*
*     End of ZLASYF_AA
*
      END