summaryrefslogtreecommitdiff
path: root/SRC/zlascl.f
blob: 44d7bfc369d56c35fdc7c1877809237d218d2e69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
*> \brief \b ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZLASCL + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlascl.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlascl.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlascl.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          TYPE
*       INTEGER            INFO, KL, KU, LDA, M, N
*       DOUBLE PRECISION   CFROM, CTO
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( LDA, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLASCL multiplies the M by N complex matrix A by the real scalar
*> CTO/CFROM.  This is done without over/underflow as long as the final
*> result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
*> A may be full, upper triangular, lower triangular, upper Hessenberg,
*> or banded.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TYPE
*> \verbatim
*>          TYPE is CHARACTER*1
*>          TYPE indices the storage type of the input matrix.
*>          = 'G':  A is a full matrix.
*>          = 'L':  A is a lower triangular matrix.
*>          = 'U':  A is an upper triangular matrix.
*>          = 'H':  A is an upper Hessenberg matrix.
*>          = 'B':  A is a symmetric band matrix with lower bandwidth KL
*>                  and upper bandwidth KU and with the only the lower
*>                  half stored.
*>          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
*>                  and upper bandwidth KU and with the only the upper
*>                  half stored.
*>          = 'Z':  A is a band matrix with lower bandwidth KL and upper
*>                  bandwidth KU. See ZGBTRF for storage details.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The lower bandwidth of A.  Referenced only if TYPE = 'B',
*>          'Q' or 'Z'.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The upper bandwidth of A.  Referenced only if TYPE = 'B',
*>          'Q' or 'Z'.
*> \endverbatim
*>
*> \param[in] CFROM
*> \verbatim
*>          CFROM is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] CTO
*> \verbatim
*>          CTO is DOUBLE PRECISION
*>
*>          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*>          without over/underflow if the final result CTO*A(I,J)/CFROM
*>          can be represented without over/underflow.  CFROM must be
*>          nonzero.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
*>          storage type.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          0  - successful exit
*>          <0 - if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16OTHERauxiliary
*
*  =====================================================================
      SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          TYPE
      INTEGER            INFO, KL, KU, LDA, M, N
      DOUBLE PRECISION   CFROM, CTO
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            DONE
      INTEGER            I, ITYPE, J, K1, K2, K3, K4
      DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH, DISNAN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
*
      IF( LSAME( TYPE, 'G' ) ) THEN
         ITYPE = 0
      ELSE IF( LSAME( TYPE, 'L' ) ) THEN
         ITYPE = 1
      ELSE IF( LSAME( TYPE, 'U' ) ) THEN
         ITYPE = 2
      ELSE IF( LSAME( TYPE, 'H' ) ) THEN
         ITYPE = 3
      ELSE IF( LSAME( TYPE, 'B' ) ) THEN
         ITYPE = 4
      ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
         ITYPE = 5
      ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
         ITYPE = 6
      ELSE
         ITYPE = -1
      END IF
*
      IF( ITYPE.EQ.-1 ) THEN
         INFO = -1
      ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
         INFO = -4
      ELSE IF( DISNAN(CTO) ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -6
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
     $         ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
         INFO = -7
      ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
         INFO = -9
      ELSE IF( ITYPE.GE.4 ) THEN
         IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
            INFO = -2
         ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
     $            ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
     $             THEN
            INFO = -3
         ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
     $            ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
     $            ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
            INFO = -9
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLASCL', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
*     Get machine parameters
*
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
*
      CFROMC = CFROM
      CTOC = CTO
*
   10 CONTINUE
      CFROM1 = CFROMC*SMLNUM
      IF( CFROM1.EQ.CFROMC ) THEN
!        CFROMC is an inf.  Multiply by a correctly signed zero for
!        finite CTOC, or a NaN if CTOC is infinite.
         MUL = CTOC / CFROMC
         DONE = .TRUE.
         CTO1 = CTOC
      ELSE
         CTO1 = CTOC / BIGNUM
         IF( CTO1.EQ.CTOC ) THEN
!           CTOC is either 0 or an inf.  In both cases, CTOC itself
!           serves as the correct multiplication factor.
            MUL = CTOC
            DONE = .TRUE.
            CFROMC = ONE
         ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
            MUL = SMLNUM
            DONE = .FALSE.
            CFROMC = CFROM1
         ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
            MUL = BIGNUM
            DONE = .FALSE.
            CTOC = CTO1
         ELSE
            MUL = CTOC / CFROMC
            DONE = .TRUE.
         END IF
      END IF
*
      IF( ITYPE.EQ.0 ) THEN
*
*        Full matrix
*
         DO 30 J = 1, N
            DO 20 I = 1, M
               A( I, J ) = A( I, J )*MUL
   20       CONTINUE
   30    CONTINUE
*
      ELSE IF( ITYPE.EQ.1 ) THEN
*
*        Lower triangular matrix
*
         DO 50 J = 1, N
            DO 40 I = J, M
               A( I, J ) = A( I, J )*MUL
   40       CONTINUE
   50    CONTINUE
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        Upper triangular matrix
*
         DO 70 J = 1, N
            DO 60 I = 1, MIN( J, M )
               A( I, J ) = A( I, J )*MUL
   60       CONTINUE
   70    CONTINUE
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        Upper Hessenberg matrix
*
         DO 90 J = 1, N
            DO 80 I = 1, MIN( J+1, M )
               A( I, J ) = A( I, J )*MUL
   80       CONTINUE
   90    CONTINUE
*
      ELSE IF( ITYPE.EQ.4 ) THEN
*
*        Lower half of a symmetric band matrix
*
         K3 = KL + 1
         K4 = N + 1
         DO 110 J = 1, N
            DO 100 I = 1, MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  100       CONTINUE
  110    CONTINUE
*
      ELSE IF( ITYPE.EQ.5 ) THEN
*
*        Upper half of a symmetric band matrix
*
         K1 = KU + 2
         K3 = KU + 1
         DO 130 J = 1, N
            DO 120 I = MAX( K1-J, 1 ), K3
               A( I, J ) = A( I, J )*MUL
  120       CONTINUE
  130    CONTINUE
*
      ELSE IF( ITYPE.EQ.6 ) THEN
*
*        Band matrix
*
         K1 = KL + KU + 2
         K2 = KL + 1
         K3 = 2*KL + KU + 1
         K4 = KL + KU + 1 + M
         DO 150 J = 1, N
            DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  140       CONTINUE
  150    CONTINUE
*
      END IF
*
      IF( .NOT.DONE )
     $   GO TO 10
*
      RETURN
*
*     End of ZLASCL
*
      END