summaryrefslogtreecommitdiff
path: root/SRC/zlantp.f
blob: 7e38e9cee5cad263afbd1e658ba23a07a48763a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
*> \brief \b ZLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZLANTP + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantp.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantp.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantp.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       DOUBLE PRECISION FUNCTION ZLANTP( NORM, UPLO, DIAG, N, AP, WORK )
* 
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, NORM, UPLO
*       INTEGER            N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   WORK( * )
*       COMPLEX*16         AP( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLANTP  returns the value of the one norm,  or the Frobenius norm, or
*> the  infinity norm,  or the  element of  largest absolute value  of a
*> triangular matrix A, supplied in packed form.
*> \endverbatim
*>
*> \return ZLANTP
*> \verbatim
*>
*>    ZLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*>             (
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
*>             (
*>             ( normI(A),         NORM = 'I' or 'i'
*>             (
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*>
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NORM
*> \verbatim
*>          NORM is CHARACTER*1
*>          Specifies the value to be returned in ZLANTP as described
*>          above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.  When N = 0, ZLANTP is
*>          set to zero.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*>          The upper or lower triangular matrix A, packed columnwise in
*>          a linear array.  The j-th column of A is stored in the array
*>          AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*>          Note that when DIAG = 'U', the elements of the array AP
*>          corresponding to the diagonal elements of the matrix A are
*>          not referenced, but are assumed to be one.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
*>          referenced.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16OTHERauxiliary
*
*  =====================================================================
      DOUBLE PRECISION FUNCTION ZLANTP( NORM, UPLO, DIAG, N, AP, WORK )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORM, UPLO
      INTEGER            N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   WORK( * )
      COMPLEX*16         AP( * )
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UDIAG
      INTEGER            I, J, K
      DOUBLE PRECISION   SCALE, SUM, VALUE
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         K = 1
         IF( LSAME( DIAG, 'U' ) ) THEN
            VALUE = ONE
            IF( LSAME( UPLO, 'U' ) ) THEN
               DO 20 J = 1, N
                  DO 10 I = K, K + J - 2
                     VALUE = MAX( VALUE, ABS( AP( I ) ) )
   10             CONTINUE
                  K = K + J
   20          CONTINUE
            ELSE
               DO 40 J = 1, N
                  DO 30 I = K + 1, K + N - J
                     VALUE = MAX( VALUE, ABS( AP( I ) ) )
   30             CONTINUE
                  K = K + N - J + 1
   40          CONTINUE
            END IF
         ELSE
            VALUE = ZERO
            IF( LSAME( UPLO, 'U' ) ) THEN
               DO 60 J = 1, N
                  DO 50 I = K, K + J - 1
                     VALUE = MAX( VALUE, ABS( AP( I ) ) )
   50             CONTINUE
                  K = K + J
   60          CONTINUE
            ELSE
               DO 80 J = 1, N
                  DO 70 I = K, K + N - J
                     VALUE = MAX( VALUE, ABS( AP( I ) ) )
   70             CONTINUE
                  K = K + N - J + 1
   80          CONTINUE
            END IF
         END IF
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
*        Find norm1(A).
*
         VALUE = ZERO
         K = 1
         UDIAG = LSAME( DIAG, 'U' )
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 110 J = 1, N
               IF( UDIAG ) THEN
                  SUM = ONE
                  DO 90 I = K, K + J - 2
                     SUM = SUM + ABS( AP( I ) )
   90             CONTINUE
               ELSE
                  SUM = ZERO
                  DO 100 I = K, K + J - 1
                     SUM = SUM + ABS( AP( I ) )
  100             CONTINUE
               END IF
               K = K + J
               VALUE = MAX( VALUE, SUM )
  110       CONTINUE
         ELSE
            DO 140 J = 1, N
               IF( UDIAG ) THEN
                  SUM = ONE
                  DO 120 I = K + 1, K + N - J
                     SUM = SUM + ABS( AP( I ) )
  120             CONTINUE
               ELSE
                  SUM = ZERO
                  DO 130 I = K, K + N - J
                     SUM = SUM + ABS( AP( I ) )
  130             CONTINUE
               END IF
               K = K + N - J + 1
               VALUE = MAX( VALUE, SUM )
  140       CONTINUE
         END IF
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI(A).
*
         K = 1
         IF( LSAME( UPLO, 'U' ) ) THEN
            IF( LSAME( DIAG, 'U' ) ) THEN
               DO 150 I = 1, N
                  WORK( I ) = ONE
  150          CONTINUE
               DO 170 J = 1, N
                  DO 160 I = 1, J - 1
                     WORK( I ) = WORK( I ) + ABS( AP( K ) )
                     K = K + 1
  160             CONTINUE
                  K = K + 1
  170          CONTINUE
            ELSE
               DO 180 I = 1, N
                  WORK( I ) = ZERO
  180          CONTINUE
               DO 200 J = 1, N
                  DO 190 I = 1, J
                     WORK( I ) = WORK( I ) + ABS( AP( K ) )
                     K = K + 1
  190             CONTINUE
  200          CONTINUE
            END IF
         ELSE
            IF( LSAME( DIAG, 'U' ) ) THEN
               DO 210 I = 1, N
                  WORK( I ) = ONE
  210          CONTINUE
               DO 230 J = 1, N
                  K = K + 1
                  DO 220 I = J + 1, N
                     WORK( I ) = WORK( I ) + ABS( AP( K ) )
                     K = K + 1
  220             CONTINUE
  230          CONTINUE
            ELSE
               DO 240 I = 1, N
                  WORK( I ) = ZERO
  240          CONTINUE
               DO 260 J = 1, N
                  DO 250 I = J, N
                     WORK( I ) = WORK( I ) + ABS( AP( K ) )
                     K = K + 1
  250             CONTINUE
  260          CONTINUE
            END IF
         END IF
         VALUE = ZERO
         DO 270 I = 1, N
            VALUE = MAX( VALUE, WORK( I ) )
  270    CONTINUE
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         IF( LSAME( UPLO, 'U' ) ) THEN
            IF( LSAME( DIAG, 'U' ) ) THEN
               SCALE = ONE
               SUM = N
               K = 2
               DO 280 J = 2, N
                  CALL ZLASSQ( J-1, AP( K ), 1, SCALE, SUM )
                  K = K + J
  280          CONTINUE
            ELSE
               SCALE = ZERO
               SUM = ONE
               K = 1
               DO 290 J = 1, N
                  CALL ZLASSQ( J, AP( K ), 1, SCALE, SUM )
                  K = K + J
  290          CONTINUE
            END IF
         ELSE
            IF( LSAME( DIAG, 'U' ) ) THEN
               SCALE = ONE
               SUM = N
               K = 2
               DO 300 J = 1, N - 1
                  CALL ZLASSQ( N-J, AP( K ), 1, SCALE, SUM )
                  K = K + N - J + 1
  300          CONTINUE
            ELSE
               SCALE = ZERO
               SUM = ONE
               K = 1
               DO 310 J = 1, N
                  CALL ZLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
                  K = K + N - J + 1
  310          CONTINUE
            END IF
         END IF
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      ZLANTP = VALUE
      RETURN
*
*     End of ZLANTP
*
      END