summaryrefslogtreecommitdiff
path: root/SRC/zlalsd.f
blob: 372b382233aea2a0fe9e939b64462ccba0805f70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
*> \brief \b ZLALSD uses the singular value decomposition of A to solve the least squares problem.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLALSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsd.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
*                          RANK, WORK, RWORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
*       DOUBLE PRECISION   RCOND
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
*       COMPLEX*16         B( LDB, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLALSD uses the singular value decomposition of A to solve the least
*> squares problem of finding X to minimize the Euclidean norm of each
*> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
*> are N-by-NRHS. The solution X overwrites B.
*>
*> The singular values of A smaller than RCOND times the largest
*> singular value are treated as zero in solving the least squares
*> problem; in this case a minimum norm solution is returned.
*> The actual singular values are returned in D in ascending order.
*>
*> This code makes very mild assumptions about floating point
*> arithmetic. It will work on machines with a guard digit in
*> add/subtract, or on those binary machines without guard digits
*> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
*> It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>         = 'U': D and E define an upper bidiagonal matrix.
*>         = 'L': D and E define a  lower bidiagonal matrix.
*> \endverbatim
*>
*> \param[in] SMLSIZ
*> \verbatim
*>          SMLSIZ is INTEGER
*>         The maximum size of the subproblems at the bottom of the
*>         computation tree.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The dimension of the  bidiagonal matrix.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>         The number of columns of B. NRHS must be at least 1.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>         On entry D contains the main diagonal of the bidiagonal
*>         matrix. On exit, if INFO = 0, D contains its singular values.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>         Contains the super-diagonal entries of the bidiagonal matrix.
*>         On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>         On input, B contains the right hand sides of the least
*>         squares problem. On output, B contains the solution X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>         The leading dimension of B in the calling subprogram.
*>         LDB must be at least max(1,N).
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>         The singular values of A less than or equal to RCOND times
*>         the largest singular value are treated as zero in solving
*>         the least squares problem. If RCOND is negative,
*>         machine precision is used instead.
*>         For example, if diag(S)*X=B were the least squares problem,
*>         where diag(S) is a diagonal matrix of singular values, the
*>         solution would be X(i) = B(i) / S(i) if S(i) is greater than
*>         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
*>         RCOND*max(S).
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*>          RANK is INTEGER
*>         The number of singular values of A greater than RCOND times
*>         the largest singular value.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension at least
*>         (N * NRHS).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension at least
*>         (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
*>         MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ),
*>         where
*>         NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension at least
*>         (3*N*NLVL + 11*N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>         = 0:  successful exit.
*>         < 0:  if INFO = -i, the i-th argument had an illegal value.
*>         > 0:  The algorithm failed to compute a singular value while
*>               working on the submatrix lying in rows and columns
*>               INFO/(N+1) through MOD(INFO,N+1).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
*>       California at Berkeley, USA \n
*>     Osni Marques, LBNL/NERSC, USA \n
*
*  =====================================================================
      SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
     $                   RANK, WORK, RWORK, IWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
      COMPLEX*16         B( LDB, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
     $                   GIVPTR, I, ICMPQ1, ICMPQ2, IRWB, IRWIB, IRWRB,
     $                   IRWU, IRWVT, IRWWRK, IWK, J, JCOL, JIMAG,
     $                   JREAL, JROW, K, NLVL, NM1, NRWORK, NSIZE, NSUB,
     $                   PERM, POLES, S, SIZEI, SMLSZP, SQRE, ST, ST1,
     $                   U, VT, Z
      DOUBLE PRECISION   CS, EPS, ORGNRM, RCND, R, SN, TOL
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DLANST
      EXTERNAL           IDAMAX, DLAMCH, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DLARTG, DLASCL, DLASDA, DLASDQ, DLASET,
     $                   DLASRT, XERBLA, ZCOPY, ZDROT, ZLACPY, ZLALSA,
     $                   ZLASCL, ZLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, LOG, SIGN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.1 ) THEN
         INFO = -4
      ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLALSD', -INFO )
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Set up the tolerance.
*
      IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
         RCND = EPS
      ELSE
         RCND = RCOND
      END IF
*
      RANK = 0
*
*     Quick return if possible.
*
      IF( N.EQ.0 ) THEN
         RETURN
      ELSE IF( N.EQ.1 ) THEN
         IF( D( 1 ).EQ.ZERO ) THEN
            CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, B, LDB )
         ELSE
            RANK = 1
            CALL ZLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
            D( 1 ) = ABS( D( 1 ) )
         END IF
         RETURN
      END IF
*
*     Rotate the matrix if it is lower bidiagonal.
*
      IF( UPLO.EQ.'L' ) THEN
         DO 10 I = 1, N - 1
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
            D( I ) = R
            E( I ) = SN*D( I+1 )
            D( I+1 ) = CS*D( I+1 )
            IF( NRHS.EQ.1 ) THEN
               CALL ZDROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
            ELSE
               RWORK( I*2-1 ) = CS
               RWORK( I*2 ) = SN
            END IF
   10    CONTINUE
         IF( NRHS.GT.1 ) THEN
            DO 30 I = 1, NRHS
               DO 20 J = 1, N - 1
                  CS = RWORK( J*2-1 )
                  SN = RWORK( J*2 )
                  CALL ZDROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
   20          CONTINUE
   30       CONTINUE
         END IF
      END IF
*
*     Scale.
*
      NM1 = N - 1
      ORGNRM = DLANST( 'M', N, D, E )
      IF( ORGNRM.EQ.ZERO ) THEN
         CALL ZLASET( 'A', N, NRHS, CZERO, CZERO, B, LDB )
         RETURN
      END IF
*
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
*
*     If N is smaller than the minimum divide size SMLSIZ, then solve
*     the problem with another solver.
*
      IF( N.LE.SMLSIZ ) THEN
         IRWU = 1
         IRWVT = IRWU + N*N
         IRWWRK = IRWVT + N*N
         IRWRB = IRWWRK
         IRWIB = IRWRB + N*NRHS
         IRWB = IRWIB + N*NRHS
         CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWU ), N )
         CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWVT ), N )
         CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, RWORK( IRWVT ), N,
     $                RWORK( IRWU ), N, RWORK( IRWWRK ), 1,
     $                RWORK( IRWWRK ), INFO )
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
*
*        In the real version, B is passed to DLASDQ and multiplied
*        internally by Q**H. Here B is complex and that product is
*        computed below in two steps (real and imaginary parts).
*
         J = IRWB - 1
         DO 50 JCOL = 1, NRHS
            DO 40 JROW = 1, N
               J = J + 1
               RWORK( J ) = DBLE( B( JROW, JCOL ) )
   40       CONTINUE
   50    CONTINUE
         CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
     $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
         J = IRWB - 1
         DO 70 JCOL = 1, NRHS
            DO 60 JROW = 1, N
               J = J + 1
               RWORK( J ) = DIMAG( B( JROW, JCOL ) )
   60       CONTINUE
   70    CONTINUE
         CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
     $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
         JREAL = IRWRB - 1
         JIMAG = IRWIB - 1
         DO 90 JCOL = 1, NRHS
            DO 80 JROW = 1, N
               JREAL = JREAL + 1
               JIMAG = JIMAG + 1
               B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
     $                           RWORK( JIMAG ) )
   80       CONTINUE
   90    CONTINUE
*
         TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
         DO 100 I = 1, N
            IF( D( I ).LE.TOL ) THEN
               CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
            ELSE
               CALL ZLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
     $                      LDB, INFO )
               RANK = RANK + 1
            END IF
  100    CONTINUE
*
*        Since B is complex, the following call to DGEMM is performed
*        in two steps (real and imaginary parts). That is for V * B
*        (in the real version of the code V**H is stored in WORK).
*
*        CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
*    $               WORK( NWORK ), N )
*
         J = IRWB - 1
         DO 120 JCOL = 1, NRHS
            DO 110 JROW = 1, N
               J = J + 1
               RWORK( J ) = DBLE( B( JROW, JCOL ) )
  110       CONTINUE
  120    CONTINUE
         CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
     $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
         J = IRWB - 1
         DO 140 JCOL = 1, NRHS
            DO 130 JROW = 1, N
               J = J + 1
               RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  130       CONTINUE
  140    CONTINUE
         CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
     $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
         JREAL = IRWRB - 1
         JIMAG = IRWIB - 1
         DO 160 JCOL = 1, NRHS
            DO 150 JROW = 1, N
               JREAL = JREAL + 1
               JIMAG = JIMAG + 1
               B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
     $                           RWORK( JIMAG ) )
  150       CONTINUE
  160    CONTINUE
*
*        Unscale.
*
         CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
         CALL DLASRT( 'D', N, D, INFO )
         CALL ZLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
         RETURN
      END IF
*
*     Book-keeping and setting up some constants.
*
      NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
*
      SMLSZP = SMLSIZ + 1
*
      U = 1
      VT = 1 + SMLSIZ*N
      DIFL = VT + SMLSZP*N
      DIFR = DIFL + NLVL*N
      Z = DIFR + NLVL*N*2
      C = Z + NLVL*N
      S = C + N
      POLES = S + N
      GIVNUM = POLES + 2*NLVL*N
      NRWORK = GIVNUM + 2*NLVL*N
      BX = 1
*
      IRWRB = NRWORK
      IRWIB = IRWRB + SMLSIZ*NRHS
      IRWB = IRWIB + SMLSIZ*NRHS
*
      SIZEI = 1 + N
      K = SIZEI + N
      GIVPTR = K + N
      PERM = GIVPTR + N
      GIVCOL = PERM + NLVL*N
      IWK = GIVCOL + NLVL*N*2
*
      ST = 1
      SQRE = 0
      ICMPQ1 = 1
      ICMPQ2 = 0
      NSUB = 0
*
      DO 170 I = 1, N
         IF( ABS( D( I ) ).LT.EPS ) THEN
            D( I ) = SIGN( EPS, D( I ) )
         END IF
  170 CONTINUE
*
      DO 240 I = 1, NM1
         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
            NSUB = NSUB + 1
            IWORK( NSUB ) = ST
*
*           Subproblem found. First determine its size and then
*           apply divide and conquer on it.
*
            IF( I.LT.NM1 ) THEN
*
*              A subproblem with E(I) small for I < NM1.
*
               NSIZE = I - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
            ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
*
*              A subproblem with E(NM1) not too small but I = NM1.
*
               NSIZE = N - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
            ELSE
*
*              A subproblem with E(NM1) small. This implies an
*              1-by-1 subproblem at D(N), which is not solved
*              explicitly.
*
               NSIZE = I - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
               NSUB = NSUB + 1
               IWORK( NSUB ) = N
               IWORK( SIZEI+NSUB-1 ) = 1
               CALL ZCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
            END IF
            ST1 = ST - 1
            IF( NSIZE.EQ.1 ) THEN
*
*              This is a 1-by-1 subproblem and is not solved
*              explicitly.
*
               CALL ZCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
            ELSE IF( NSIZE.LE.SMLSIZ ) THEN
*
*              This is a small subproblem and is solved by DLASDQ.
*
               CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
     $                      RWORK( VT+ST1 ), N )
               CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
     $                      RWORK( U+ST1 ), N )
               CALL DLASDQ( 'U', 0, NSIZE, NSIZE, NSIZE, 0, D( ST ),
     $                      E( ST ), RWORK( VT+ST1 ), N, RWORK( U+ST1 ),
     $                      N, RWORK( NRWORK ), 1, RWORK( NRWORK ),
     $                      INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
*
*              In the real version, B is passed to DLASDQ and multiplied
*              internally by Q**H. Here B is complex and that product is
*              computed below in two steps (real and imaginary parts).
*
               J = IRWB - 1
               DO 190 JCOL = 1, NRHS
                  DO 180 JROW = ST, ST + NSIZE - 1
                     J = J + 1
                     RWORK( J ) = DBLE( B( JROW, JCOL ) )
  180             CONTINUE
  190          CONTINUE
               CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
     $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
     $                     ZERO, RWORK( IRWRB ), NSIZE )
               J = IRWB - 1
               DO 210 JCOL = 1, NRHS
                  DO 200 JROW = ST, ST + NSIZE - 1
                     J = J + 1
                     RWORK( J ) = DIMAG( B( JROW, JCOL ) )
  200             CONTINUE
  210          CONTINUE
               CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
     $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
     $                     ZERO, RWORK( IRWIB ), NSIZE )
               JREAL = IRWRB - 1
               JIMAG = IRWIB - 1
               DO 230 JCOL = 1, NRHS
                  DO 220 JROW = ST, ST + NSIZE - 1
                     JREAL = JREAL + 1
                     JIMAG = JIMAG + 1
                     B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
     $                                 RWORK( JIMAG ) )
  220             CONTINUE
  230          CONTINUE
*
               CALL ZLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
     $                      WORK( BX+ST1 ), N )
            ELSE
*
*              A large problem. Solve it using divide and conquer.
*
               CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
     $                      E( ST ), RWORK( U+ST1 ), N, RWORK( VT+ST1 ),
     $                      IWORK( K+ST1 ), RWORK( DIFL+ST1 ),
     $                      RWORK( DIFR+ST1 ), RWORK( Z+ST1 ),
     $                      RWORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
     $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
     $                      RWORK( GIVNUM+ST1 ), RWORK( C+ST1 ),
     $                      RWORK( S+ST1 ), RWORK( NRWORK ),
     $                      IWORK( IWK ), INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
               BXST = BX + ST1
               CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
     $                      LDB, WORK( BXST ), N, RWORK( U+ST1 ), N,
     $                      RWORK( VT+ST1 ), IWORK( K+ST1 ),
     $                      RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
     $                      RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
     $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
     $                      IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
     $                      RWORK( C+ST1 ), RWORK( S+ST1 ),
     $                      RWORK( NRWORK ), IWORK( IWK ), INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
            END IF
            ST = I + 1
         END IF
  240 CONTINUE
*
*     Apply the singular values and treat the tiny ones as zero.
*
      TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
*
      DO 250 I = 1, N
*
*        Some of the elements in D can be negative because 1-by-1
*        subproblems were not solved explicitly.
*
         IF( ABS( D( I ) ).LE.TOL ) THEN
            CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, WORK( BX+I-1 ), N )
         ELSE
            RANK = RANK + 1
            CALL ZLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
     $                   WORK( BX+I-1 ), N, INFO )
         END IF
         D( I ) = ABS( D( I ) )
  250 CONTINUE
*
*     Now apply back the right singular vectors.
*
      ICMPQ2 = 1
      DO 320 I = 1, NSUB
         ST = IWORK( I )
         ST1 = ST - 1
         NSIZE = IWORK( SIZEI+I-1 )
         BXST = BX + ST1
         IF( NSIZE.EQ.1 ) THEN
            CALL ZCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
         ELSE IF( NSIZE.LE.SMLSIZ ) THEN
*
*           Since B and BX are complex, the following call to DGEMM
*           is performed in two steps (real and imaginary parts).
*
*           CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
*    $                  RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO,
*    $                  B( ST, 1 ), LDB )
*
            J = BXST - N - 1
            JREAL = IRWB - 1
            DO 270 JCOL = 1, NRHS
               J = J + N
               DO 260 JROW = 1, NSIZE
                  JREAL = JREAL + 1
                  RWORK( JREAL ) = DBLE( WORK( J+JROW ) )
  260          CONTINUE
  270       CONTINUE
            CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
     $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
     $                  RWORK( IRWRB ), NSIZE )
            J = BXST - N - 1
            JIMAG = IRWB - 1
            DO 290 JCOL = 1, NRHS
               J = J + N
               DO 280 JROW = 1, NSIZE
                  JIMAG = JIMAG + 1
                  RWORK( JIMAG ) = DIMAG( WORK( J+JROW ) )
  280          CONTINUE
  290       CONTINUE
            CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
     $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
     $                  RWORK( IRWIB ), NSIZE )
            JREAL = IRWRB - 1
            JIMAG = IRWIB - 1
            DO 310 JCOL = 1, NRHS
               DO 300 JROW = ST, ST + NSIZE - 1
                  JREAL = JREAL + 1
                  JIMAG = JIMAG + 1
                  B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
     $                              RWORK( JIMAG ) )
  300          CONTINUE
  310       CONTINUE
         ELSE
            CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
     $                   B( ST, 1 ), LDB, RWORK( U+ST1 ), N,
     $                   RWORK( VT+ST1 ), IWORK( K+ST1 ),
     $                   RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
     $                   RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
     $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
     $                   IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
     $                   RWORK( C+ST1 ), RWORK( S+ST1 ),
     $                   RWORK( NRWORK ), IWORK( IWK ), INFO )
            IF( INFO.NE.0 ) THEN
               RETURN
            END IF
         END IF
  320 CONTINUE
*
*     Unscale and sort the singular values.
*
      CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
      CALL DLASRT( 'D', N, D, INFO )
      CALL ZLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
      RETURN
*
*     End of ZLALSD
*
      END