1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
*> \brief \b ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLALSA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsa.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsa.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsa.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
* IWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
* $ SMLSIZ
* ..
* .. Array Arguments ..
* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
* $ K( * ), PERM( LDGCOL, * )
* DOUBLE PRECISION C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
* $ GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
* $ S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
* COMPLEX*16 B( LDB, * ), BX( LDBX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLALSA is an itermediate step in solving the least squares problem
*> by computing the SVD of the coefficient matrix in compact form (The
*> singular vectors are computed as products of simple orthorgonal
*> matrices.).
*>
*> If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
*> matrix of an upper bidiagonal matrix to the right hand side; and if
*> ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
*> right hand side. The singular vector matrices were generated in
*> compact form by ZLALSA.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ICOMPQ
*> \verbatim
*> ICOMPQ is INTEGER
*> Specifies whether the left or the right singular vector
*> matrix is involved.
*> = 0: Left singular vector matrix
*> = 1: Right singular vector matrix
*> \endverbatim
*>
*> \param[in] SMLSIZ
*> \verbatim
*> SMLSIZ is INTEGER
*> The maximum size of the subproblems at the bottom of the
*> computation tree.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The row and column dimensions of the upper bidiagonal matrix.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B and BX. NRHS must be at least 1.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension ( LDB, NRHS )
*> On input, B contains the right hand sides of the least
*> squares problem in rows 1 through M.
*> On output, B contains the solution X in rows 1 through N.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B in the calling subprogram.
*> LDB must be at least max(1,MAX( M, N ) ).
*> \endverbatim
*>
*> \param[out] BX
*> \verbatim
*> BX is COMPLEX*16 array, dimension ( LDBX, NRHS )
*> On exit, the result of applying the left or right singular
*> vector matrix to B.
*> \endverbatim
*>
*> \param[in] LDBX
*> \verbatim
*> LDBX is INTEGER
*> The leading dimension of BX.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
*> On entry, U contains the left singular vector matrices of all
*> subproblems at the bottom level.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER, LDU = > N.
*> The leading dimension of arrays U, VT, DIFL, DIFR,
*> POLES, GIVNUM, and Z.
*> \endverbatim
*>
*> \param[in] VT
*> \verbatim
*> VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
*> On entry, VT**H contains the right singular vector matrices of
*> all subproblems at the bottom level.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER array, dimension ( N ).
*> \endverbatim
*>
*> \param[in] DIFL
*> \verbatim
*> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
*> where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
*> \endverbatim
*>
*> \param[in] DIFR
*> \verbatim
*> DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
*> On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
*> distances between singular values on the I-th level and
*> singular values on the (I -1)-th level, and DIFR(*, 2 * I)
*> record the normalizing factors of the right singular vectors
*> matrices of subproblems on I-th level.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
*> On entry, Z(1, I) contains the components of the deflation-
*> adjusted updating row vector for subproblems on the I-th
*> level.
*> \endverbatim
*>
*> \param[in] POLES
*> \verbatim
*> POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
*> On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
*> singular values involved in the secular equations on the I-th
*> level.
*> \endverbatim
*>
*> \param[in] GIVPTR
*> \verbatim
*> GIVPTR is INTEGER array, dimension ( N ).
*> On entry, GIVPTR( I ) records the number of Givens
*> rotations performed on the I-th problem on the computation
*> tree.
*> \endverbatim
*>
*> \param[in] GIVCOL
*> \verbatim
*> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
*> On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
*> locations of Givens rotations performed on the I-th level on
*> the computation tree.
*> \endverbatim
*>
*> \param[in] LDGCOL
*> \verbatim
*> LDGCOL is INTEGER, LDGCOL = > N.
*> The leading dimension of arrays GIVCOL and PERM.
*> \endverbatim
*>
*> \param[in] PERM
*> \verbatim
*> PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
*> On entry, PERM(*, I) records permutations done on the I-th
*> level of the computation tree.
*> \endverbatim
*>
*> \param[in] GIVNUM
*> \verbatim
*> GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
*> On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
*> values of Givens rotations performed on the I-th level on the
*> computation tree.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension ( N ).
*> On entry, if the I-th subproblem is not square,
*> C( I ) contains the C-value of a Givens rotation related to
*> the right null space of the I-th subproblem.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension ( N ).
*> On entry, if the I-th subproblem is not square,
*> S( I ) contains the S-value of a Givens rotation related to
*> the right null space of the I-th subproblem.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension at least
*> MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup complex16OTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
*> California at Berkeley, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*
* =====================================================================
SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
$ LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
$ GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
$ IWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
$ SMLSIZ
* ..
* .. Array Arguments ..
INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
$ K( * ), PERM( LDGCOL, * )
DOUBLE PRECISION C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
$ GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
$ S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
COMPLEX*16 B( LDB, * ), BX( LDBX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER I, I1, IC, IM1, INODE, J, JCOL, JIMAG, JREAL,
$ JROW, LF, LL, LVL, LVL2, ND, NDB1, NDIML,
$ NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQRE
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLASDT, XERBLA, ZCOPY, ZLALS0
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, DIMAG
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
INFO = -1
ELSE IF( SMLSIZ.LT.3 ) THEN
INFO = -2
ELSE IF( N.LT.SMLSIZ ) THEN
INFO = -3
ELSE IF( NRHS.LT.1 ) THEN
INFO = -4
ELSE IF( LDB.LT.N ) THEN
INFO = -6
ELSE IF( LDBX.LT.N ) THEN
INFO = -8
ELSE IF( LDU.LT.N ) THEN
INFO = -10
ELSE IF( LDGCOL.LT.N ) THEN
INFO = -19
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLALSA', -INFO )
RETURN
END IF
*
* Book-keeping and setting up the computation tree.
*
INODE = 1
NDIML = INODE + N
NDIMR = NDIML + N
*
CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
$ IWORK( NDIMR ), SMLSIZ )
*
* The following code applies back the left singular vector factors.
* For applying back the right singular vector factors, go to 170.
*
IF( ICOMPQ.EQ.1 ) THEN
GO TO 170
END IF
*
* The nodes on the bottom level of the tree were solved
* by DLASDQ. The corresponding left and right singular vector
* matrices are in explicit form. First apply back the left
* singular vector matrices.
*
NDB1 = ( ND+1 ) / 2
DO 130 I = NDB1, ND
*
* IC : center row of each node
* NL : number of rows of left subproblem
* NR : number of rows of right subproblem
* NLF: starting row of the left subproblem
* NRF: starting row of the right subproblem
*
I1 = I - 1
IC = IWORK( INODE+I1 )
NL = IWORK( NDIML+I1 )
NR = IWORK( NDIMR+I1 )
NLF = IC - NL
NRF = IC + 1
*
* Since B and BX are complex, the following call to DGEMM
* is performed in two steps (real and imaginary parts).
*
* CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
*
J = NL*NRHS*2
DO 20 JCOL = 1, NRHS
DO 10 JROW = NLF, NLF + NL - 1
J = J + 1
RWORK( J ) = DBLE( B( JROW, JCOL ) )
10 CONTINUE
20 CONTINUE
CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
$ RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1 ), NL )
J = NL*NRHS*2
DO 40 JCOL = 1, NRHS
DO 30 JROW = NLF, NLF + NL - 1
J = J + 1
RWORK( J ) = DIMAG( B( JROW, JCOL ) )
30 CONTINUE
40 CONTINUE
CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
$ RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1+NL*NRHS ),
$ NL )
JREAL = 0
JIMAG = NL*NRHS
DO 60 JCOL = 1, NRHS
DO 50 JROW = NLF, NLF + NL - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
50 CONTINUE
60 CONTINUE
*
* Since B and BX are complex, the following call to DGEMM
* is performed in two steps (real and imaginary parts).
*
* CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
*
J = NR*NRHS*2
DO 80 JCOL = 1, NRHS
DO 70 JROW = NRF, NRF + NR - 1
J = J + 1
RWORK( J ) = DBLE( B( JROW, JCOL ) )
70 CONTINUE
80 CONTINUE
CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
$ RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1 ), NR )
J = NR*NRHS*2
DO 100 JCOL = 1, NRHS
DO 90 JROW = NRF, NRF + NR - 1
J = J + 1
RWORK( J ) = DIMAG( B( JROW, JCOL ) )
90 CONTINUE
100 CONTINUE
CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
$ RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1+NR*NRHS ),
$ NR )
JREAL = 0
JIMAG = NR*NRHS
DO 120 JCOL = 1, NRHS
DO 110 JROW = NRF, NRF + NR - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
110 CONTINUE
120 CONTINUE
*
130 CONTINUE
*
* Next copy the rows of B that correspond to unchanged rows
* in the bidiagonal matrix to BX.
*
DO 140 I = 1, ND
IC = IWORK( INODE+I-1 )
CALL ZCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
140 CONTINUE
*
* Finally go through the left singular vector matrices of all
* the other subproblems bottom-up on the tree.
*
J = 2**NLVL
SQRE = 0
*
DO 160 LVL = NLVL, 1, -1
LVL2 = 2*LVL - 1
*
* find the first node LF and last node LL on
* the current level LVL
*
IF( LVL.EQ.1 ) THEN
LF = 1
LL = 1
ELSE
LF = 2**( LVL-1 )
LL = 2*LF - 1
END IF
DO 150 I = LF, LL
IM1 = I - 1
IC = IWORK( INODE+IM1 )
NL = IWORK( NDIML+IM1 )
NR = IWORK( NDIMR+IM1 )
NLF = IC - NL
NRF = IC + 1
J = J - 1
CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
$ B( NLF, 1 ), LDB, PERM( NLF, LVL ),
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
$ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
$ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
$ Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
$ INFO )
150 CONTINUE
160 CONTINUE
GO TO 330
*
* ICOMPQ = 1: applying back the right singular vector factors.
*
170 CONTINUE
*
* First now go through the right singular vector matrices of all
* the tree nodes top-down.
*
J = 0
DO 190 LVL = 1, NLVL
LVL2 = 2*LVL - 1
*
* Find the first node LF and last node LL on
* the current level LVL.
*
IF( LVL.EQ.1 ) THEN
LF = 1
LL = 1
ELSE
LF = 2**( LVL-1 )
LL = 2*LF - 1
END IF
DO 180 I = LL, LF, -1
IM1 = I - 1
IC = IWORK( INODE+IM1 )
NL = IWORK( NDIML+IM1 )
NR = IWORK( NDIMR+IM1 )
NLF = IC - NL
NRF = IC + 1
IF( I.EQ.LL ) THEN
SQRE = 0
ELSE
SQRE = 1
END IF
J = J + 1
CALL ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
$ BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
$ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
$ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
$ Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
$ INFO )
180 CONTINUE
190 CONTINUE
*
* The nodes on the bottom level of the tree were solved
* by DLASDQ. The corresponding right singular vector
* matrices are in explicit form. Apply them back.
*
NDB1 = ( ND+1 ) / 2
DO 320 I = NDB1, ND
I1 = I - 1
IC = IWORK( INODE+I1 )
NL = IWORK( NDIML+I1 )
NR = IWORK( NDIMR+I1 )
NLP1 = NL + 1
IF( I.EQ.ND ) THEN
NRP1 = NR
ELSE
NRP1 = NR + 1
END IF
NLF = IC - NL
NRF = IC + 1
*
* Since B and BX are complex, the following call to DGEMM is
* performed in two steps (real and imaginary parts).
*
* CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
*
J = NLP1*NRHS*2
DO 210 JCOL = 1, NRHS
DO 200 JROW = NLF, NLF + NLP1 - 1
J = J + 1
RWORK( J ) = DBLE( B( JROW, JCOL ) )
200 CONTINUE
210 CONTINUE
CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
$ RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO, RWORK( 1 ),
$ NLP1 )
J = NLP1*NRHS*2
DO 230 JCOL = 1, NRHS
DO 220 JROW = NLF, NLF + NLP1 - 1
J = J + 1
RWORK( J ) = DIMAG( B( JROW, JCOL ) )
220 CONTINUE
230 CONTINUE
CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
$ RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO,
$ RWORK( 1+NLP1*NRHS ), NLP1 )
JREAL = 0
JIMAG = NLP1*NRHS
DO 250 JCOL = 1, NRHS
DO 240 JROW = NLF, NLF + NLP1 - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
240 CONTINUE
250 CONTINUE
*
* Since B and BX are complex, the following call to DGEMM is
* performed in two steps (real and imaginary parts).
*
* CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
*
J = NRP1*NRHS*2
DO 270 JCOL = 1, NRHS
DO 260 JROW = NRF, NRF + NRP1 - 1
J = J + 1
RWORK( J ) = DBLE( B( JROW, JCOL ) )
260 CONTINUE
270 CONTINUE
CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
$ RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO, RWORK( 1 ),
$ NRP1 )
J = NRP1*NRHS*2
DO 290 JCOL = 1, NRHS
DO 280 JROW = NRF, NRF + NRP1 - 1
J = J + 1
RWORK( J ) = DIMAG( B( JROW, JCOL ) )
280 CONTINUE
290 CONTINUE
CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
$ RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO,
$ RWORK( 1+NRP1*NRHS ), NRP1 )
JREAL = 0
JIMAG = NRP1*NRHS
DO 310 JCOL = 1, NRHS
DO 300 JROW = NRF, NRF + NRP1 - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
BX( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
300 CONTINUE
310 CONTINUE
*
320 CONTINUE
*
330 CONTINUE
*
RETURN
*
* End of ZLALSA
*
END
|