1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
*> \brief \b ZLAG2C converts a complex double precision matrix to a complex single precision matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAG2C + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlag2c.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlag2c.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlag2c.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLAG2C( M, N, A, LDA, SA, LDSA, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDSA, M, N
* ..
* .. Array Arguments ..
* COMPLEX SA( LDSA, * )
* COMPLEX*16 A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLAG2C converts a COMPLEX*16 matrix, SA, to a COMPLEX matrix, A.
*>
*> RMAX is the overflow for the SINGLE PRECISION arithmetic
*> ZLAG2C checks that all the entries of A are between -RMAX and
*> RMAX. If not the conversion is aborted and a flag is raised.
*>
*> This is an auxiliary routine so there is no argument checking.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of lines of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the M-by-N coefficient matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] SA
*> \verbatim
*> SA is COMPLEX array, dimension (LDSA,N)
*> On exit, if INFO=0, the M-by-N coefficient matrix SA; if
*> INFO>0, the content of SA is unspecified.
*> \endverbatim
*>
*> \param[in] LDSA
*> \verbatim
*> LDSA is INTEGER
*> The leading dimension of the array SA. LDSA >= max(1,M).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> = 1: an entry of the matrix A is greater than the SINGLE
*> PRECISION overflow threshold, in this case, the content
*> of SA in exit is unspecified.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZLAG2C( M, N, A, LDA, SA, LDSA, INFO )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDSA, M, N
* ..
* .. Array Arguments ..
COMPLEX SA( LDSA, * )
COMPLEX*16 A( LDA, * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION RMAX
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DIMAG
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. Executable Statements ..
*
RMAX = SLAMCH( 'O' )
DO 20 J = 1, N
DO 10 I = 1, M
IF( ( DBLE( A( I, J ) ).LT.-RMAX ) .OR.
$ ( DBLE( A( I, J ) ).GT.RMAX ) .OR.
$ ( DIMAG( A( I, J ) ).LT.-RMAX ) .OR.
$ ( DIMAG( A( I, J ) ).GT.RMAX ) ) THEN
INFO = 1
GO TO 30
END IF
SA( I, J ) = A( I, J )
10 CONTINUE
20 CONTINUE
INFO = 0
30 CONTINUE
RETURN
*
* End of ZLAG2C
*
END
|