1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
SUBROUTINE ZLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
COMPLEX*16 A, B, C, CS1, EVSCAL, RT1, RT2, SN1
* ..
*
* Purpose
* =======
*
* ZLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix
* ( ( A, B );( B, C ) )
* provided the norm of the matrix of eigenvectors is larger than
* some threshold value.
*
* RT1 is the eigenvalue of larger absolute value, and RT2 of
* smaller absolute value. If the eigenvectors are computed, then
* on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence
*
* [ CS1 SN1 ] . [ A B ] . [ CS1 -SN1 ] = [ RT1 0 ]
* [ -SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]
*
* Arguments
* =========
*
* A (input) COMPLEX*16
* The ( 1, 1 ) element of input matrix.
*
* B (input) COMPLEX*16
* The ( 1, 2 ) element of input matrix. The ( 2, 1 ) element
* is also given by B, since the 2-by-2 matrix is symmetric.
*
* C (input) COMPLEX*16
* The ( 2, 2 ) element of input matrix.
*
* RT1 (output) COMPLEX*16
* The eigenvalue of larger modulus.
*
* RT2 (output) COMPLEX*16
* The eigenvalue of smaller modulus.
*
* EVSCAL (output) COMPLEX*16
* The complex value by which the eigenvector matrix was scaled
* to make it orthonormal. If EVSCAL is zero, the eigenvectors
* were not computed. This means one of two things: the 2-by-2
* matrix could not be diagonalized, or the norm of the matrix
* of eigenvectors before scaling was larger than the threshold
* value THRESH (set below).
*
* CS1 (output) COMPLEX*16
* SN1 (output) COMPLEX*16
* If EVSCAL .NE. 0, ( CS1, SN1 ) is the unit right eigenvector
* for RT1.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION HALF
PARAMETER ( HALF = 0.5D0 )
DOUBLE PRECISION THRESH
PARAMETER ( THRESH = 0.1D0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION BABS, EVNORM, TABS, Z
COMPLEX*16 S, T, TMP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
*
* Special case: The matrix is actually diagonal.
* To avoid divide by zero later, we treat this case separately.
*
IF( ABS( B ).EQ.ZERO ) THEN
RT1 = A
RT2 = C
IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
TMP = RT1
RT1 = RT2
RT2 = TMP
CS1 = ZERO
SN1 = ONE
ELSE
CS1 = ONE
SN1 = ZERO
END IF
ELSE
*
* Compute the eigenvalues and eigenvectors.
* The characteristic equation is
* lambda **2 - (A+C) lambda + (A*C - B*B)
* and we solve it using the quadratic formula.
*
S = ( A+C )*HALF
T = ( A-C )*HALF
*
* Take the square root carefully to avoid over/under flow.
*
BABS = ABS( B )
TABS = ABS( T )
Z = MAX( BABS, TABS )
IF( Z.GT.ZERO )
$ T = Z*SQRT( ( T / Z )**2+( B / Z )**2 )
*
* Compute the two eigenvalues. RT1 and RT2 are exchanged
* if necessary so that RT1 will have the greater magnitude.
*
RT1 = S + T
RT2 = S - T
IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
TMP = RT1
RT1 = RT2
RT2 = TMP
END IF
*
* Choose CS1 = 1 and SN1 to satisfy the first equation, then
* scale the components of this eigenvector so that the matrix
* of eigenvectors X satisfies X * X' = I . (No scaling is
* done if the norm of the eigenvalue matrix is less than THRESH.)
*
SN1 = ( RT1-A ) / B
TABS = ABS( SN1 )
IF( TABS.GT.ONE ) THEN
T = TABS*SQRT( ( ONE / TABS )**2+( SN1 / TABS )**2 )
ELSE
T = SQRT( CONE+SN1*SN1 )
END IF
EVNORM = ABS( T )
IF( EVNORM.GE.THRESH ) THEN
EVSCAL = CONE / T
CS1 = EVSCAL
SN1 = SN1*EVSCAL
ELSE
EVSCAL = ZERO
END IF
END IF
RETURN
*
* End of ZLAESY
*
END
|