summaryrefslogtreecommitdiff
path: root/SRC/zla_gbrcond_x.f
blob: 236508b3045c70000e33b7cd69722869c091f526 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
      DOUBLE PRECISION FUNCTION ZLA_GBRCOND_X( TRANS, N, KL, KU, AB,
     $                             LDAB, AFB, LDAFB, IPIV, X, INFO,
     $     WORK, RWORK )
*
*     -- LAPACK routine (version 3.2.1)                               --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- November 2008                                                --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            N, KL, KU, KD, KE, LDAB, LDAFB, INFO
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
     $                   X( * )
      DOUBLE PRECISION   RWORK( * )
*
*
*  Purpose
*  =======
*
*     ZLA_GBRCOND_X Computes the infinity norm condition number of
*     op(A) * diag(X) where X is a COMPLEX*16 vector.
*
*  Arguments
*  =========
*
*  X     COMPLEX*16 vector.
*
*  WORK  COMPLEX*16 workspace of size 2*N.
*
*  RWORK DOUBLE PRECISION workspace of size 3*N.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            NOTRANS
      INTEGER            KASE, I, J
      DOUBLE PRECISION   AINVNM, ANORM, TMP
      COMPLEX*16         ZDUM
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLACN2, ZGBTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function Definitions ..
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      ZLA_GBRCOND_X = 0.0D+0
*
      INFO = 0
      NOTRANS = LSAME( TRANS, 'N' )
      IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T') .AND. .NOT.
     $     LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
         INFO = -4
      ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KL+KU+1 ) THEN
         INFO = -8
      ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLA_GBRCOND_X', -INFO )
         RETURN
      END IF
*
*     Compute norm of op(A)*op2(C).
*
      KD = KU + 1
      KE = KL + 1
      ANORM = 0.0D+0
      IF ( NOTRANS ) THEN
         DO I = 1, N
            TMP = 0.0D+0
            DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
               TMP = TMP + CABS1( AB( KD+I-J, J) * X( J ) )
            END DO
            RWORK( 2*N+I ) = TMP
            ANORM = MAX( ANORM, TMP )
         END DO
      ELSE
         DO I = 1, N
            TMP = 0.0D+0
            DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
               TMP = TMP + CABS1( AB( KE-I+J, I ) * X( J ) )
            END DO
            RWORK( 2*N+I ) = TMP
            ANORM = MAX( ANORM, TMP )
         END DO
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 ) THEN
         ZLA_GBRCOND_X = 1.0D+0
         RETURN
      ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
         RETURN
      END IF
*
*     Estimate the norm of inv(op(A)).
*
      AINVNM = 0.0D+0
*
      KASE = 0
   10 CONTINUE
      CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
         IF( KASE.EQ.2 ) THEN
*
*           Multiply by R.
*
            DO I = 1, N
               WORK( I ) = WORK( I ) * RWORK( 2*N+I )
            END DO
*
            IF ( NOTRANS ) THEN
               CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
     $              IPIV, WORK, N, INFO )
            ELSE
               CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
     $              LDAFB, IPIV, WORK, N, INFO )
            ENDIF
*
*           Multiply by inv(X).
*
            DO I = 1, N
               WORK( I ) = WORK( I ) / X( I )
            END DO
         ELSE
*
*           Multiply by inv(X').
*
            DO I = 1, N
               WORK( I ) = WORK( I ) / X( I )
            END DO
*
            IF ( NOTRANS ) THEN
               CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
     $              LDAFB, IPIV, WORK, N, INFO )
            ELSE
               CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
     $              IPIV, WORK, N, INFO )
            END IF
*
*           Multiply by R.
*
            DO I = 1, N
               WORK( I ) = WORK( I ) * RWORK( 2*N+I )
            END DO
         END IF
         GO TO 10
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM .NE. 0.0D+0 )
     $   ZLA_GBRCOND_X = 1.0D+0 / AINVNM
*
      RETURN
*
      END