1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
|
SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
$ ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
$ RWORK, LRWORK, IWORK, LIWORK, INFO )
*
* -- LAPACK driver routine (version 3.2.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2010
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
$ M, N
DOUBLE PRECISION ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * ), IWORK( * )
DOUBLE PRECISION RWORK( * ), W( * )
COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
* of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
* be selected by specifying either a range of values or a range of
* indices for the desired eigenvalues.
*
* ZHEEVR first reduces the matrix A to tridiagonal form T with a call
* to ZHETRD. Then, whenever possible, ZHEEVR calls ZSTEMR to compute
* eigenspectrum using Relatively Robust Representations. ZSTEMR
* computes eigenvalues by the dqds algorithm, while orthogonal
* eigenvectors are computed from various "good" L D L^T representations
* (also known as Relatively Robust Representations). Gram-Schmidt
* orthogonalization is avoided as far as possible. More specifically,
* the various steps of the algorithm are as follows.
*
* For each unreduced block (submatrix) of T,
* (a) Compute T - sigma I = L D L^T, so that L and D
* define all the wanted eigenvalues to high relative accuracy.
* This means that small relative changes in the entries of D and L
* cause only small relative changes in the eigenvalues and
* eigenvectors. The standard (unfactored) representation of the
* tridiagonal matrix T does not have this property in general.
* (b) Compute the eigenvalues to suitable accuracy.
* If the eigenvectors are desired, the algorithm attains full
* accuracy of the computed eigenvalues only right before
* the corresponding vectors have to be computed, see steps c) and d).
* (c) For each cluster of close eigenvalues, select a new
* shift close to the cluster, find a new factorization, and refine
* the shifted eigenvalues to suitable accuracy.
* (d) For each eigenvalue with a large enough relative separation compute
* the corresponding eigenvector by forming a rank revealing twisted
* factorization. Go back to (c) for any clusters that remain.
*
* The desired accuracy of the output can be specified by the input
* parameter ABSTOL.
*
* For more details, see DSTEMR's documentation and:
* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
* to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
* 2004. Also LAPACK Working Note 154.
* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
* tridiagonal eigenvalue/eigenvector problem",
* Computer Science Division Technical Report No. UCB/CSD-97-971,
* UC Berkeley, May 1997.
*
*
* Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
* on machines which conform to the ieee-754 floating point standard.
* ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
* when partial spectrum requests are made.
*
* Normal execution of ZSTEMR may create NaNs and infinities and
* hence may abort due to a floating point exception in environments
* which do not handle NaNs and infinities in the ieee standard default
* manner.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
********** ZSTEIN are called
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA, N)
* On entry, the Hermitian matrix A. If UPLO = 'U', the
* leading N-by-N upper triangular part of A contains the
* upper triangular part of the matrix A. If UPLO = 'L',
* the leading N-by-N lower triangular part of A contains
* the lower triangular part of the matrix A.
* On exit, the lower triangle (if UPLO='L') or the upper
* triangle (if UPLO='U') of A, including the diagonal, is
* destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* VL (input) DOUBLE PRECISION
* VU (input) DOUBLE PRECISION
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (input) DOUBLE PRECISION
* The absolute error tolerance for the eigenvalues.
* An approximate eigenvalue is accepted as converged
* when it is determined to lie in an interval [a,b]
* of width less than or equal to
*
* ABSTOL + EPS * max( |a|,|b| ) ,
*
* where EPS is the machine precision. If ABSTOL is less than
* or equal to zero, then EPS*|T| will be used in its place,
* where |T| is the 1-norm of the tridiagonal matrix obtained
* by reducing A to tridiagonal form.
*
* See "Computing Small Singular Values of Bidiagonal Matrices
* with Guaranteed High Relative Accuracy," by Demmel and
* Kahan, LAPACK Working Note #3.
*
* If high relative accuracy is important, set ABSTOL to
* DLAMCH( 'Safe minimum' ). Doing so will guarantee that
* eigenvalues are computed to high relative accuracy when
* possible in future releases. The current code does not
* make any guarantees about high relative accuracy, but
* furutre releases will. See J. Barlow and J. Demmel,
* "Computing Accurate Eigensystems of Scaled Diagonally
* Dominant Matrices", LAPACK Working Note #7, for a discussion
* of which matrices define their eigenvalues to high relative
* accuracy.
*
* M (output) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (output) DOUBLE PRECISION array, dimension (N)
* The first M elements contain the selected eigenvalues in
* ascending order.
*
* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
* contain the orthonormal eigenvectors of the matrix A
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* If JOBZ = 'N', then Z is not referenced.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
* The support of the eigenvectors in Z, i.e., the indices
* indicating the nonzero elements in Z. The i-th eigenvector
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
* ISUPPZ( 2*i ).
********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
*
* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The length of the array WORK. LWORK >= max(1,2*N).
* For optimal efficiency, LWORK >= (NB+1)*N,
* where NB is the max of the blocksize for ZHETRD and for
* ZUNMTR as returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal sizes of the WORK, RWORK and
* IWORK arrays, returns these values as the first entries of
* the WORK, RWORK and IWORK arrays, and no error message
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*
* RWORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
* On exit, if INFO = 0, RWORK(1) returns the optimal
* (and minimal) LRWORK.
*
* LRWORK (input) INTEGER
* The length of the array RWORK. LRWORK >= max(1,24*N).
*
* If LRWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal sizes of the WORK, RWORK
* and IWORK arrays, returns these values as the first entries
* of the WORK, RWORK and IWORK arrays, and no error message
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
* On exit, if INFO = 0, IWORK(1) returns the optimal
* (and minimal) LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK. LIWORK >= max(1,10*N).
*
* If LIWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal sizes of the WORK, RWORK
* and IWORK arrays, returns these values as the first entries
* of the WORK, RWORK and IWORK arrays, and no error message
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: Internal error
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
* Ken Stanley, Computer Science Division, University of
* California at Berkeley, USA
* Jason Riedy, Computer Science Division, University of
* California at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
$ WANTZ, TRYRAC
CHARACTER ORDER
INTEGER I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
$ INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
$ INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
$ LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
$ LWKOPT, LWMIN, NB, NSPLIT
DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
$ SIGMA, SMLNUM, TMP1, VLL, VUU
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, ZLANSY
EXTERNAL LSAME, ILAENV, DLAMCH, ZLANSY
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
$ ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
*
LOWER = LSAME( UPLO, 'L' )
WANTZ = LSAME( JOBZ, 'V' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
*
LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
$ ( LIWORK.EQ.-1 ) )
*
LRWMIN = MAX( 1, 24*N )
LIWMIN = MAX( 1, 10*N )
LWMIN = MAX( 1, 2*N )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -2
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE
IF( VALEIG ) THEN
IF( N.GT.0 .AND. VU.LE.VL )
$ INFO = -8
ELSE IF( INDEIG ) THEN
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
INFO = -10
END IF
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -15
END IF
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
LWKOPT = MAX( ( NB+1 )*N, LWMIN )
WORK( 1 ) = LWKOPT
RWORK( 1 ) = LRWMIN
IWORK( 1 ) = LIWMIN
*
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -18
ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
INFO = -20
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -22
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHEEVR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( N.EQ.1 ) THEN
WORK( 1 ) = 2
IF( ALLEIG .OR. INDEIG ) THEN
M = 1
W( 1 ) = DBLE( A( 1, 1 ) )
ELSE
IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
$ THEN
M = 1
W( 1 ) = DBLE( A( 1, 1 ) )
END IF
END IF
IF( WANTZ ) THEN
Z( 1, 1 ) = ONE
ISUPPZ( 1 ) = 1
ISUPPZ( 2 ) = 1
END IF
RETURN
END IF
*
* Get machine constants.
*
SAFMIN = DLAMCH( 'Safe minimum' )
EPS = DLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
* Scale matrix to allowable range, if necessary.
*
ISCALE = 0
ABSTLL = ABSTOL
IF (VALEIG) THEN
VLL = VL
VUU = VU
END IF
ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 ) THEN
IF( LOWER ) THEN
DO 10 J = 1, N
CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
10 CONTINUE
ELSE
DO 20 J = 1, N
CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
20 CONTINUE
END IF
IF( ABSTOL.GT.0 )
$ ABSTLL = ABSTOL*SIGMA
IF( VALEIG ) THEN
VLL = VL*SIGMA
VUU = VU*SIGMA
END IF
END IF
* Initialize indices into workspaces. Note: The IWORK indices are
* used only if DSTERF or ZSTEMR fail.
* WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
* elementary reflectors used in ZHETRD.
INDTAU = 1
* INDWK is the starting offset of the remaining complex workspace,
* and LLWORK is the remaining complex workspace size.
INDWK = INDTAU + N
LLWORK = LWORK - INDWK + 1
* RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
* entries.
INDRD = 1
* RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
* tridiagonal matrix from ZHETRD.
INDRE = INDRD + N
* RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
* -written by ZSTEMR (the DSTERF path copies the diagonal to W).
INDRDD = INDRE + N
* RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
* -written while computing the eigenvalues in DSTERF and ZSTEMR.
INDREE = INDRDD + N
* INDRWK is the starting offset of the left-over real workspace, and
* LLRWORK is the remaining workspace size.
INDRWK = INDREE + N
LLRWORK = LRWORK - INDRWK + 1
* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
* stores the block indices of each of the M<=N eigenvalues.
INDIBL = 1
* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
* stores the starting and finishing indices of each block.
INDISP = INDIBL + N
* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
* that corresponding to eigenvectors that fail to converge in
* DSTEIN. This information is discarded; if any fail, the driver
* returns INFO > 0.
INDIFL = INDISP + N
* INDIWO is the offset of the remaining integer workspace.
INDIWO = INDISP + N
*
* Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
*
CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
$ WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
*
* If all eigenvalues are desired
* then call DSTERF or ZSTEMR and ZUNMTR.
*
TEST = .FALSE.
IF( INDEIG ) THEN
IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
TEST = .TRUE.
END IF
END IF
IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
IF( .NOT.WANTZ ) THEN
CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
CALL DSTERF( N, W, RWORK( INDREE ), INFO )
ELSE
CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
*
IF (ABSTOL .LE. TWO*N*EPS) THEN
TRYRAC = .TRUE.
ELSE
TRYRAC = .FALSE.
END IF
CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
$ RWORK( INDREE ), VL, VU, IL, IU, M, W,
$ Z, LDZ, N, ISUPPZ, TRYRAC,
$ RWORK( INDRWK ), LLRWORK,
$ IWORK, LIWORK, INFO )
*
* Apply unitary matrix used in reduction to tridiagonal
* form to eigenvectors returned by ZSTEIN.
*
IF( WANTZ .AND. INFO.EQ.0 ) THEN
INDWKN = INDWK
LLWRKN = LWORK - INDWKN + 1
CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
$ WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
$ LLWRKN, IINFO )
END IF
END IF
*
*
IF( INFO.EQ.0 ) THEN
M = N
GO TO 30
END IF
INFO = 0
END IF
*
* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
* Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
*
IF( WANTZ ) THEN
ORDER = 'B'
ELSE
ORDER = 'E'
END IF
CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
$ RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
$ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
$ IWORK( INDIWO ), INFO )
*
IF( WANTZ ) THEN
CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
$ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
$ RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
$ INFO )
*
* Apply unitary matrix used in reduction to tridiagonal
* form to eigenvectors returned by ZSTEIN.
*
INDWKN = INDWK
LLWRKN = LWORK - INDWKN + 1
CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
$ LDZ, WORK( INDWKN ), LLWRKN, IINFO )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
30 CONTINUE
IF( ISCALE.EQ.1 ) THEN
IF( INFO.EQ.0 ) THEN
IMAX = M
ELSE
IMAX = INFO - 1
END IF
CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
END IF
*
* If eigenvalues are not in order, then sort them, along with
* eigenvectors.
*
IF( WANTZ ) THEN
DO 50 J = 1, M - 1
I = 0
TMP1 = W( J )
DO 40 JJ = J + 1, M
IF( W( JJ ).LT.TMP1 ) THEN
I = JJ
TMP1 = W( JJ )
END IF
40 CONTINUE
*
IF( I.NE.0 ) THEN
ITMP1 = IWORK( INDIBL+I-1 )
W( I ) = W( J )
IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
W( J ) = TMP1
IWORK( INDIBL+J-1 ) = ITMP1
CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
END IF
50 CONTINUE
END IF
*
* Set WORK(1) to optimal workspace size.
*
WORK( 1 ) = LWKOPT
RWORK( 1 ) = LRWMIN
IWORK( 1 ) = LIWMIN
*
RETURN
*
* End of ZHEEVR
*
END
|