1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
*> \brief \b ZHEEQUB
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download ZHEEQUB + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheequb.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheequb.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheequb.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, N
* DOUBLE PRECISION AMAX, SCOND
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), WORK( * )
* DOUBLE PRECISION S( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> ZSYEQUB computes row and column scalings intended to equilibrate a
*> symmetric matrix A and reduce its condition number
*> (with respect to the two-norm). S contains the scale factors,
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
*> choice of S puts the condition number of B within a factor N of the
*> smallest possible condition number over all possible diagonal
*> scalings.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangles of A and B are stored;
*> = 'L': Lower triangles of A and B are stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The N-by-N symmetric matrix whose scaling
*> factors are to be computed. Only the diagonal elements of A
*> are referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (N)
*> If INFO = 0, S contains the scale factors for A.
*> \endverbatim
*>
*> \param[out] SCOND
*> \verbatim
*> SCOND is DOUBLE PRECISION
*> If INFO = 0, S contains the ratio of the smallest S(i) to
*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is DOUBLE PRECISION
*> Absolute value of largest matrix element. If AMAX is very
*> close to overflow or very close to underflow, the matrix
*> should be scaled.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element is nonpositive.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16HEcomputational
*
* =====================================================================
SUBROUTINE ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
*
* -- LAPACK computational routine (version 3.2.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, N
DOUBLE PRECISION AMAX, SCOND
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), WORK( * )
DOUBLE PRECISION S( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER MAX_ITER
PARAMETER ( MAX_ITER = 100 )
* ..
* .. Local Scalars ..
INTEGER I, J, ITER
DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D,
$ BASE, SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
LOGICAL UP
COMPLEX*16 ZDUM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
LOGICAL LSAME
EXTERNAL DLAMCH, LSAME
* ..
* .. External Subroutines ..
EXTERNAL ZLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DIMAG, INT, LOG, MAX, MIN, SQRT
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function Definitions ..
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
*
* Test input parameters.
*
INFO = 0
IF (.NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -1
ELSE IF ( N .LT. 0 ) THEN
INFO = -2
ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
INFO = -4
END IF
IF ( INFO .NE. 0 ) THEN
CALL XERBLA( 'ZHEEQUB', -INFO )
RETURN
END IF
UP = LSAME( UPLO, 'U' )
AMAX = ZERO
*
* Quick return if possible.
*
IF ( N .EQ. 0 ) THEN
SCOND = ONE
RETURN
END IF
DO I = 1, N
S( I ) = ZERO
END DO
AMAX = ZERO
IF ( UP ) THEN
DO J = 1, N
DO I = 1, J-1
S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
END DO
S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
END DO
ELSE
DO J = 1, N
S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
DO I = J+1, N
S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
AMAX = MAX( AMAX, CABS1( A(I, J ) ) )
END DO
END DO
END IF
DO J = 1, N
S( J ) = 1.0D+0 / S( J )
END DO
TOL = ONE / SQRT( 2.0D0 * N )
DO ITER = 1, MAX_ITER
SCALE = 0.0D+0
SUMSQ = 0.0D+0
* beta = |A|s
DO I = 1, N
WORK( I ) = ZERO
END DO
IF ( UP ) THEN
DO J = 1, N
DO I = 1, J-1
T = CABS1( A( I, J ) )
WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
END DO
WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
END DO
ELSE
DO J = 1, N
WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
DO I = J+1, N
T = CABS1( A( I, J ) )
WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
END DO
END DO
END IF
* avg = s^T beta / n
AVG = 0.0D+0
DO I = 1, N
AVG = AVG + S( I )*WORK( I )
END DO
AVG = AVG / N
STD = 0.0D+0
DO I = 2*N+1, 3*N
WORK( I ) = S( I-2*N ) * WORK( I-2*N ) - AVG
END DO
CALL ZLASSQ( N, WORK( 2*N+1 ), 1, SCALE, SUMSQ )
STD = SCALE * SQRT( SUMSQ / N )
IF ( STD .LT. TOL * AVG ) GOTO 999
DO I = 1, N
T = CABS1( A( I, I ) )
SI = S( I )
C2 = ( N-1 ) * T
C1 = ( N-2 ) * ( WORK( I ) - T*SI )
C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
D = C1*C1 - 4*C0*C2
IF ( D .LE. 0 ) THEN
INFO = -1
RETURN
END IF
SI = -2*C0 / ( C1 + SQRT( D ) )
D = SI - S(I)
U = ZERO
IF ( UP ) THEN
DO J = 1, I
T = CABS1( A( J, I ) )
U = U + S( J )*T
WORK( J ) = WORK( J ) + D*T
END DO
DO J = I+1,N
T = CABS1( A( I, J ) )
U = U + S( J )*T
WORK( J ) = WORK( J ) + D*T
END DO
ELSE
DO J = 1, I
T = CABS1( A( I, J ) )
U = U + S( J )*T
WORK( J ) = WORK( J ) + D*T
END DO
DO J = I+1,N
T = CABS1( A( J, I ) )
U = U + S( J )*T
WORK( J ) = WORK( J ) + D*T
END DO
END IF
AVG = AVG + ( U + WORK( I ) ) * D / N
S( I ) = SI
END DO
END DO
999 CONTINUE
SMLNUM = DLAMCH( 'SAFEMIN' )
BIGNUM = ONE / SMLNUM
SMIN = BIGNUM
SMAX = ZERO
T = ONE / SQRT( AVG )
BASE = DLAMCH( 'B' )
U = ONE / LOG( BASE )
DO I = 1, N
S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
SMIN = MIN( SMIN, S( I ) )
SMAX = MAX( SMAX, S( I ) )
END DO
SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
END
|