summaryrefslogtreecommitdiff
path: root/SRC/zhbev_2stage.f
blob: f6f6abe21dfe006d6b4689c76eb0a960475f333a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
*> \brief <b> ZHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
*
*  @precisions fortran z -> s d c
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZHBEV_2STAGE + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbev_2stage.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbev_2stage.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbev_2stage.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZHBEV_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
*                                WORK, LWORK, RWORK, INFO )
*
*       IMPLICIT NONE
*
*       .. Scalar Arguments ..
*       CHARACTER          JOBZ, UPLO
*       INTEGER            INFO, KD, LDAB, LDZ, N, LWORK
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RWORK( * ), W( * )
*       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZHBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
*> a complex Hermitian band matrix A using the 2stage technique for
*> the reduction to tridiagonal.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBZ
*> \verbatim
*>          JOBZ is CHARACTER*1
*>          = 'N':  Compute eigenvalues only;
*>          = 'V':  Compute eigenvalues and eigenvectors.
*>                  Not available in this release.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is COMPLEX*16 array, dimension (LDAB, N)
*>          On entry, the upper or lower triangle of the Hermitian band
*>          matrix A, stored in the first KD+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*>
*>          On exit, AB is overwritten by values generated during the
*>          reduction to tridiagonal form.  If UPLO = 'U', the first
*>          superdiagonal and the diagonal of the tridiagonal matrix T
*>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
*>          the diagonal and first subdiagonal of T are returned in the
*>          first two rows of AB.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD + 1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is DOUBLE PRECISION array, dimension (N)
*>          If INFO = 0, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is COMPLEX*16 array, dimension (LDZ, N)
*>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
*>          eigenvectors of the matrix A, with the i-th column of Z
*>          holding the eigenvector associated with W(i).
*>          If JOBZ = 'N', then Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= 1, and if
*>          JOBZ = 'V', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension LWORK
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of the array WORK. LWORK >= 1, when N <= 1;
*>          otherwise  
*>          If JOBZ = 'N' and N > 1, LWORK must be queried.
*>                                   LWORK = MAX(1, dimension) where
*>                                   dimension = (2KD+1)*N + KD*NTHREADS
*>                                   where KD is the size of the band.
*>                                   NTHREADS is the number of threads used when
*>                                   openMP compilation is enabled, otherwise =1.
*>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal sizes of the WORK, RWORK and
*>          IWORK arrays, returns these values as the first entries of
*>          the WORK, RWORK and IWORK arrays, and no error message
*>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if INFO = i, the algorithm failed to converge; i
*>                off-diagonal elements of an intermediate tridiagonal
*>                form did not converge to zero.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup complex16OTHEReigen
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  All details about the 2stage techniques are available in:
*>
*>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
*>  Parallel reduction to condensed forms for symmetric eigenvalue problems
*>  using aggregated fine-grained and memory-aware kernels. In Proceedings
*>  of 2011 International Conference for High Performance Computing,
*>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
*>  Article 8 , 11 pages.
*>  http://doi.acm.org/10.1145/2063384.2063394
*>
*>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
*>  An improved parallel singular value algorithm and its implementation 
*>  for multicore hardware, In Proceedings of 2013 International Conference
*>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
*>  Denver, Colorado, USA, 2013.
*>  Article 90, 12 pages.
*>  http://doi.acm.org/10.1145/2503210.2503292
*>
*>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
*>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
*>  calculations based on fine-grained memory aware tasks.
*>  International Journal of High Performance Computing Applications.
*>  Volume 28 Issue 2, Pages 196-209, May 2014.
*>  http://hpc.sagepub.com/content/28/2/196 
*>
*> \endverbatim
*
*  =====================================================================
      SUBROUTINE ZHBEV_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
     $                         WORK, LWORK, RWORK, INFO )
*
      IMPLICIT NONE
*
*  -- LAPACK driver routine (version 3.7.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2017
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, KD, LDAB, LDZ, N, LWORK
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * ), W( * )
      COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, WANTZ, LQUERY
      INTEGER            IINFO, IMAX, INDE, INDWRK, INDRWK, ISCALE,
     $                   LLWORK, LWMIN, LHTRD, LWTRD, IB, INDHOUS
      DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
     $                   SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, ZLANHB
      EXTERNAL           LSAME, DLAMCH, ZLANHB, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DSTERF, XERBLA, ZLASCL, ZSTEQR,
     $                   ZHETRD_2STAGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      LOWER = LSAME( UPLO, 'L' )
      LQUERY = ( LWORK.EQ.-1 )
*
      INFO = 0
      IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KD.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -6
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -9
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( N.LE.1 ) THEN
            LWMIN = 1
            WORK( 1 ) = LWMIN
         ELSE
            IB    = ILAENV( 18, 'ZHETRD_HB2ST', JOBZ, N, KD, -1, -1 )
            LHTRD = ILAENV( 19, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
            LWTRD = ILAENV( 20, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
            LWMIN = LHTRD + LWTRD
            WORK( 1 )  = LWMIN
         ENDIF
*
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
     $      INFO = -11
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZHBEV_2STAGE ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( LOWER ) THEN
            W( 1 ) = DBLE( AB( 1, 1 ) )
         ELSE
            W( 1 ) = DBLE( AB( KD+1, 1 ) )
         END IF
         IF( WANTZ )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
*     Get machine constants.
*
      SAFMIN = DLAMCH( 'Safe minimum' )
      EPS    = DLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN   = SQRT( SMLNUM )
      RMAX   = SQRT( BIGNUM )
*
*     Scale matrix to allowable range, if necessary.
*
      ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
      ISCALE = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
      END IF
      IF( ISCALE.EQ.1 ) THEN
         IF( LOWER ) THEN
            CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
         ELSE
            CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
         END IF
      END IF
*
*     Call ZHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
*
      INDE    = 1
      INDHOUS = 1
      INDWRK  = INDHOUS + LHTRD
      LLWORK  = LWORK - INDWRK + 1
*
      CALL ZHETRD_HB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
     $                    RWORK( INDE ), WORK( INDHOUS ), LHTRD, 
     $                    WORK( INDWRK ), LLWORK, IINFO )
*
*     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEQR.
*
      IF( .NOT.WANTZ ) THEN
         CALL DSTERF( N, W, RWORK( INDE ), INFO )
      ELSE
         INDRWK = INDE + N
         CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
     $                RWORK( INDRWK ), INFO )
      END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
      IF( ISCALE.EQ.1 ) THEN
         IF( INFO.EQ.0 ) THEN
            IMAX = N
         ELSE
            IMAX = INFO - 1
         END IF
         CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
      END IF
*
*     Set WORK(1) to optimal workspace size.
*
      WORK( 1 ) = LWMIN
*
      RETURN
*
*     End of ZHBEV_2STAGE
*
      END