1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
*> \brief \b ZGTTS2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGTTS2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtts2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtts2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtts2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition
* ==========
*
* SUBROUTINE ZGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
*
* .. Scalar Arguments ..
* INTEGER ITRANS, LDB, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> ZGTTS2 solves one of the systems of equations
*> A * X = B, A**T * X = B, or A**H * X = B,
*> with a tridiagonal matrix A using the LU factorization computed
*> by ZGTTRF.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] ITRANS
*> \verbatim
*> ITRANS is INTEGER
*> Specifies the form of the system of equations.
*> = 0: A * X = B (No transpose)
*> = 1: A**T * X = B (Transpose)
*> = 2: A**H * X = B (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*> DL is COMPLEX*16 array, dimension (N-1)
*> The (n-1) multipliers that define the matrix L from the
*> LU factorization of A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX*16 array, dimension (N)
*> The n diagonal elements of the upper triangular matrix U from
*> the LU factorization of A.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*> DU is COMPLEX*16 array, dimension (N-1)
*> The (n-1) elements of the first super-diagonal of U.
*> \endverbatim
*>
*> \param[in] DU2
*> \verbatim
*> DU2 is COMPLEX*16 array, dimension (N-2)
*> The (n-2) elements of the second super-diagonal of U.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices; for 1 <= i <= n, row i of the matrix was
*> interchanged with row IPIV(i). IPIV(i) will always be either
*> i or i+1; IPIV(i) = i indicates a row interchange was not
*> required.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> On entry, the matrix of right hand side vectors B.
*> On exit, B is overwritten by the solution vectors X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER ITRANS, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
COMPLEX*16 TEMP
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
IF( ITRANS.EQ.0 ) THEN
*
* Solve A*X = B using the LU factorization of A,
* overwriting each right hand side vector with its solution.
*
IF( NRHS.LE.1 ) THEN
J = 1
10 CONTINUE
*
* Solve L*x = b.
*
DO 20 I = 1, N - 1
IF( IPIV( I ).EQ.I ) THEN
B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
ELSE
TEMP = B( I, J )
B( I, J ) = B( I+1, J )
B( I+1, J ) = TEMP - DL( I )*B( I, J )
END IF
20 CONTINUE
*
* Solve U*x = b.
*
B( N, J ) = B( N, J ) / D( N )
IF( N.GT.1 )
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
$ D( N-1 )
DO 30 I = N - 2, 1, -1
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
$ B( I+2, J ) ) / D( I )
30 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 10
END IF
ELSE
DO 60 J = 1, NRHS
*
* Solve L*x = b.
*
DO 40 I = 1, N - 1
IF( IPIV( I ).EQ.I ) THEN
B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
ELSE
TEMP = B( I, J )
B( I, J ) = B( I+1, J )
B( I+1, J ) = TEMP - DL( I )*B( I, J )
END IF
40 CONTINUE
*
* Solve U*x = b.
*
B( N, J ) = B( N, J ) / D( N )
IF( N.GT.1 )
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
$ D( N-1 )
DO 50 I = N - 2, 1, -1
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
$ B( I+2, J ) ) / D( I )
50 CONTINUE
60 CONTINUE
END IF
ELSE IF( ITRANS.EQ.1 ) THEN
*
* Solve A**T * X = B.
*
IF( NRHS.LE.1 ) THEN
J = 1
70 CONTINUE
*
* Solve U**T * x = b.
*
B( 1, J ) = B( 1, J ) / D( 1 )
IF( N.GT.1 )
$ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
DO 80 I = 3, N
B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
$ B( I-2, J ) ) / D( I )
80 CONTINUE
*
* Solve L**T * x = b.
*
DO 90 I = N - 1, 1, -1
IF( IPIV( I ).EQ.I ) THEN
B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
ELSE
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - DL( I )*TEMP
B( I, J ) = TEMP
END IF
90 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 70
END IF
ELSE
DO 120 J = 1, NRHS
*
* Solve U**T * x = b.
*
B( 1, J ) = B( 1, J ) / D( 1 )
IF( N.GT.1 )
$ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
DO 100 I = 3, N
B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
$ DU2( I-2 )*B( I-2, J ) ) / D( I )
100 CONTINUE
*
* Solve L**T * x = b.
*
DO 110 I = N - 1, 1, -1
IF( IPIV( I ).EQ.I ) THEN
B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
ELSE
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - DL( I )*TEMP
B( I, J ) = TEMP
END IF
110 CONTINUE
120 CONTINUE
END IF
ELSE
*
* Solve A**H * X = B.
*
IF( NRHS.LE.1 ) THEN
J = 1
130 CONTINUE
*
* Solve U**H * x = b.
*
B( 1, J ) = B( 1, J ) / DCONJG( D( 1 ) )
IF( N.GT.1 )
$ B( 2, J ) = ( B( 2, J )-DCONJG( DU( 1 ) )*B( 1, J ) ) /
$ DCONJG( D( 2 ) )
DO 140 I = 3, N
B( I, J ) = ( B( I, J )-DCONJG( DU( I-1 ) )*B( I-1, J )-
$ DCONJG( DU2( I-2 ) )*B( I-2, J ) ) /
$ DCONJG( D( I ) )
140 CONTINUE
*
* Solve L**H * x = b.
*
DO 150 I = N - 1, 1, -1
IF( IPIV( I ).EQ.I ) THEN
B( I, J ) = B( I, J ) - DCONJG( DL( I ) )*B( I+1, J )
ELSE
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - DCONJG( DL( I ) )*TEMP
B( I, J ) = TEMP
END IF
150 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 130
END IF
ELSE
DO 180 J = 1, NRHS
*
* Solve U**H * x = b.
*
B( 1, J ) = B( 1, J ) / DCONJG( D( 1 ) )
IF( N.GT.1 )
$ B( 2, J ) = ( B( 2, J )-DCONJG( DU( 1 ) )*B( 1, J ) )
$ / DCONJG( D( 2 ) )
DO 160 I = 3, N
B( I, J ) = ( B( I, J )-DCONJG( DU( I-1 ) )*
$ B( I-1, J )-DCONJG( DU2( I-2 ) )*
$ B( I-2, J ) ) / DCONJG( D( I ) )
160 CONTINUE
*
* Solve L**H * x = b.
*
DO 170 I = N - 1, 1, -1
IF( IPIV( I ).EQ.I ) THEN
B( I, J ) = B( I, J ) - DCONJG( DL( I ) )*
$ B( I+1, J )
ELSE
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - DCONJG( DL( I ) )*TEMP
B( I, J ) = TEMP
END IF
170 CONTINUE
180 CONTINUE
END IF
END IF
*
* End of ZGTTS2
*
END
|