summaryrefslogtreecommitdiff
path: root/SRC/zgtsvx.f
blob: 3b300c3b5a389443a696c3f90ef9a54453ae7819 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
*> \brief \b ZGTSVX
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZGTSVX + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtsvx.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtsvx.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtsvx.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
*                          DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
*                          WORK, RWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          FACT, TRANS
*       INTEGER            INFO, LDB, LDX, N, NRHS
*       DOUBLE PRECISION   RCOND
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
*       COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
*      $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
*      $                   WORK( * ), X( LDX, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGTSVX uses the LU factorization to compute the solution to a complex
*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
*> where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
*> matrices.
*>
*> Error bounds on the solution and a condition estimate are also
*> provided.
*> \endverbatim
*
*> \par Description:
*  =================
*>
*> \verbatim
*>
*> The following steps are performed:
*>
*> 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
*>    as A = L * U, where L is a product of permutation and unit lower
*>    bidiagonal matrices and U is upper triangular with nonzeros in
*>    only the main diagonal and first two superdiagonals.
*>
*> 2. If some U(i,i)=0, so that U is exactly singular, then the routine
*>    returns with INFO = i. Otherwise, the factored form of A is used
*>    to estimate the condition number of the matrix A.  If the
*>    reciprocal of the condition number is less than machine precision,
*>    INFO = N+1 is returned as a warning, but the routine still goes on
*>    to solve for X and compute error bounds as described below.
*>
*> 3. The system of equations is solved for X using the factored form
*>    of A.
*>
*> 4. Iterative refinement is applied to improve the computed solution
*>    matrix and calculate error bounds and backward error estimates
*>    for it.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] FACT
*> \verbatim
*>          FACT is CHARACTER*1
*>          Specifies whether or not the factored form of A has been
*>          supplied on entry.
*>          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored form
*>                  of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not
*>                  be modified.
*>          = 'N':  The matrix will be copied to DLF, DF, and DUF
*>                  and factored.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations:
*>          = 'N':  A * X = B     (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*>          DL is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) subdiagonal elements of A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is COMPLEX*16 array, dimension (N)
*>          The n diagonal elements of A.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*>          DU is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) superdiagonal elements of A.
*> \endverbatim
*>
*> \param[in,out] DLF
*> \verbatim
*>          DLF is or output) COMPLEX*16 array, dimension (N-1)
*>          If FACT = 'F', then DLF is an input argument and on entry
*>          contains the (n-1) multipliers that define the matrix L from
*>          the LU factorization of A as computed by ZGTTRF.
*>
*>          If FACT = 'N', then DLF is an output argument and on exit
*>          contains the (n-1) multipliers that define the matrix L from
*>          the LU factorization of A.
*> \endverbatim
*>
*> \param[in,out] DF
*> \verbatim
*>          DF is or output) COMPLEX*16 array, dimension (N)
*>          If FACT = 'F', then DF is an input argument and on entry
*>          contains the n diagonal elements of the upper triangular
*>          matrix U from the LU factorization of A.
*>
*>          If FACT = 'N', then DF is an output argument and on exit
*>          contains the n diagonal elements of the upper triangular
*>          matrix U from the LU factorization of A.
*> \endverbatim
*>
*> \param[in,out] DUF
*> \verbatim
*>          DUF is or output) COMPLEX*16 array, dimension (N-1)
*>          If FACT = 'F', then DUF is an input argument and on entry
*>          contains the (n-1) elements of the first superdiagonal of U.
*>
*>          If FACT = 'N', then DUF is an output argument and on exit
*>          contains the (n-1) elements of the first superdiagonal of U.
*> \endverbatim
*>
*> \param[in,out] DU2
*> \verbatim
*>          DU2 is or output) COMPLEX*16 array, dimension (N-2)
*>          If FACT = 'F', then DU2 is an input argument and on entry
*>          contains the (n-2) elements of the second superdiagonal of
*>          U.
*>
*>          If FACT = 'N', then DU2 is an output argument and on exit
*>          contains the (n-2) elements of the second superdiagonal of
*>          U.
*> \endverbatim
*>
*> \param[in,out] IPIV
*> \verbatim
*>          IPIV is or output) INTEGER array, dimension (N)
*>          If FACT = 'F', then IPIV is an input argument and on entry
*>          contains the pivot indices from the LU factorization of A as
*>          computed by ZGTTRF.
*>
*>          If FACT = 'N', then IPIV is an output argument and on exit
*>          contains the pivot indices from the LU factorization of A;
*>          row i of the matrix was interchanged with row IPIV(i).
*>          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
*>          a row interchange was not required.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          The N-by-NRHS right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>          The estimate of the reciprocal condition number of the matrix
*>          A.  If RCOND is less than the machine precision (in
*>          particular, if RCOND = 0), the matrix is singular to working
*>          precision.  This condition is indicated by a return code of
*>          INFO > 0.
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The estimated forward error bound for each solution vector
*>          X(j) (the j-th column of the solution matrix X).
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
*>          is an estimated upper bound for the magnitude of the largest
*>          element in (X(j) - XTRUE) divided by the magnitude of the
*>          largest element in X(j).  The estimate is as reliable as
*>          the estimate for RCOND, and is almost always a slight
*>          overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The componentwise relative backward error of each solution
*>          vector X(j) (i.e., the smallest relative change in
*>          any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, and i is
*>                <= N:  U(i,i) is exactly zero.  The factorization
*>                       has not been completed unless i = N, but the
*>                       factor U is exactly singular, so the solution
*>                       and error bounds could not be computed.
*>                       RCOND = 0 is returned.
*>                = N+1: U is nonsingular, but RCOND is less than machine
*>                       precision, meaning that the matrix is singular
*>                       to working precision.  Nevertheless, the
*>                       solution and error bounds are computed because
*>                       there are a number of situations where the
*>                       computed solution can be more accurate than the
*>                       value of RCOND would suggest.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16OTHERcomputational
*
*  =====================================================================
      SUBROUTINE ZGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
     $                   DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
     $                   WORK, RWORK, INFO )
*
*  -- LAPACK computational routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          FACT, TRANS
      INTEGER            INFO, LDB, LDX, N, NRHS
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
      COMPLEX*16         B( LDB, * ), D( * ), DF( * ), DL( * ),
     $                   DLF( * ), DU( * ), DU2( * ), DUF( * ),
     $                   WORK( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOFACT, NOTRAN
      CHARACTER          NORM
      DOUBLE PRECISION   ANORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANGT
      EXTERNAL           LSAME, DLAMCH, ZLANGT
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZCOPY, ZGTCON, ZGTRFS, ZGTTRF, ZGTTRS,
     $                   ZLACPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -14
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -16
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGTSVX', -INFO )
         RETURN
      END IF
*
      IF( NOFACT ) THEN
*
*        Compute the LU factorization of A.
*
         CALL ZCOPY( N, D, 1, DF, 1 )
         IF( N.GT.1 ) THEN
            CALL ZCOPY( N-1, DL, 1, DLF, 1 )
            CALL ZCOPY( N-1, DU, 1, DUF, 1 )
         END IF
         CALL ZGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.GT.0 )THEN
            RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A.
*
      IF( NOTRAN ) THEN
         NORM = '1'
      ELSE
         NORM = 'I'
      END IF
      ANORM = ZLANGT( NORM, N, DL, D, DU )
*
*     Compute the reciprocal of the condition number of A.
*
      CALL ZGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
     $             INFO )
*
*     Compute the solution vectors X.
*
      CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL ZGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
     $             INFO )
*
*     Use iterative refinement to improve the computed solutions and
*     compute error bounds and backward error estimates for them.
*
      CALL ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
     $             B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
*
*     Set INFO = N+1 if the matrix is singular to working precision.
*
      IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
     $   INFO = N + 1
*
      RETURN
*
*     End of ZGTSVX
*
      END