summaryrefslogtreecommitdiff
path: root/SRC/zgtcon.f
blob: 97532fe2ec16e31e30c69e5e2de99b39a533e3eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
      SUBROUTINE ZGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
     $                   WORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            INFO, N
      DOUBLE PRECISION   ANORM, RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGTCON estimates the reciprocal of the condition number of a complex
*  tridiagonal matrix A using the LU factorization as computed by
*  ZGTTRF.
*
*  An estimate is obtained for norm(inv(A)), and the reciprocal of the
*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies whether the 1-norm condition number or the
*          infinity-norm condition number is required:
*          = '1' or 'O':  1-norm;
*          = 'I':         Infinity-norm.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  DL      (input) COMPLEX*16 array, dimension (N-1)
*          The (n-1) multipliers that define the matrix L from the
*          LU factorization of A as computed by ZGTTRF.
*
*  D       (input) COMPLEX*16 array, dimension (N)
*          The n diagonal elements of the upper triangular matrix U from
*          the LU factorization of A.
*
*  DU      (input) COMPLEX*16 array, dimension (N-1)
*          The (n-1) elements of the first superdiagonal of U.
*
*  DU2     (input) COMPLEX*16 array, dimension (N-2)
*          The (n-2) elements of the second superdiagonal of U.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= n, row i of the matrix was
*          interchanged with row IPIV(i).  IPIV(i) will always be either
*          i or i+1; IPIV(i) = i indicates a row interchange was not
*          required.
*
*  ANORM   (input) DOUBLE PRECISION
*          If NORM = '1' or 'O', the 1-norm of the original matrix A.
*          If NORM = 'I', the infinity-norm of the original matrix A.
*
*  RCOND   (output) DOUBLE PRECISION
*          The reciprocal of the condition number of the matrix A,
*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
*          estimate of the 1-norm of inv(A) computed in this routine.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ONENRM
      INTEGER            I, KASE, KASE1
      DOUBLE PRECISION   AINVNM
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZGTTRS, ZLACN2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ANORM.LT.ZERO ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGTCON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( ANORM.EQ.ZERO ) THEN
         RETURN
      END IF
*
*     Check that D(1:N) is non-zero.
*
      DO 10 I = 1, N
         IF( D( I ).EQ.DCMPLX( ZERO ) )
     $      RETURN
   10 CONTINUE
*
      AINVNM = ZERO
      IF( ONENRM ) THEN
         KASE1 = 1
      ELSE
         KASE1 = 2
      END IF
      KASE = 0
   20 CONTINUE
      CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
         IF( KASE.EQ.KASE1 ) THEN
*
*           Multiply by inv(U)*inv(L).
*
            CALL ZGTTRS( 'No transpose', N, 1, DL, D, DU, DU2, IPIV,
     $                   WORK, N, INFO )
         ELSE
*
*           Multiply by inv(L')*inv(U').
*
            CALL ZGTTRS( 'Conjugate transpose', N, 1, DL, D, DU, DU2,
     $                   IPIV, WORK, N, INFO )
         END IF
         GO TO 20
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM.NE.ZERO )
     $   RCOND = ( ONE / AINVNM ) / ANORM
*
      RETURN
*
*     End of ZGTCON
*
      END