1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
SUBROUTINE ZGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
$ WORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER INFO, N
DOUBLE PRECISION ANORM, RCOND
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZGTCON estimates the reciprocal of the condition number of a complex
* tridiagonal matrix A using the LU factorization as computed by
* ZGTTRF.
*
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies whether the 1-norm condition number or the
* infinity-norm condition number is required:
* = '1' or 'O': 1-norm;
* = 'I': Infinity-norm.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* DL (input) COMPLEX*16 array, dimension (N-1)
* The (n-1) multipliers that define the matrix L from the
* LU factorization of A as computed by ZGTTRF.
*
* D (input) COMPLEX*16 array, dimension (N)
* The n diagonal elements of the upper triangular matrix U from
* the LU factorization of A.
*
* DU (input) COMPLEX*16 array, dimension (N-1)
* The (n-1) elements of the first superdiagonal of U.
*
* DU2 (input) COMPLEX*16 array, dimension (N-2)
* The (n-2) elements of the second superdiagonal of U.
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices; for 1 <= i <= n, row i of the matrix was
* interchanged with row IPIV(i). IPIV(i) will always be either
* i or i+1; IPIV(i) = i indicates a row interchange was not
* required.
*
* ANORM (input) DOUBLE PRECISION
* If NORM = '1' or 'O', the 1-norm of the original matrix A.
* If NORM = 'I', the infinity-norm of the original matrix A.
*
* RCOND (output) DOUBLE PRECISION
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
* estimate of the 1-norm of inv(A) computed in this routine.
*
* WORK (workspace) COMPLEX*16 array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ONENRM
INTEGER I, KASE, KASE1
DOUBLE PRECISION AINVNM
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGTTRS, ZLACN2
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGTCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
* Check that D(1:N) is non-zero.
*
DO 10 I = 1, N
IF( D( I ).EQ.DCMPLX( ZERO ) )
$ RETURN
10 CONTINUE
*
AINVNM = ZERO
IF( ONENRM ) THEN
KASE1 = 1
ELSE
KASE1 = 2
END IF
KASE = 0
20 CONTINUE
CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.KASE1 ) THEN
*
* Multiply by inv(U)*inv(L).
*
CALL ZGTTRS( 'No transpose', N, 1, DL, D, DU, DU2, IPIV,
$ WORK, N, INFO )
ELSE
*
* Multiply by inv(L')*inv(U').
*
CALL ZGTTRS( 'Conjugate transpose', N, 1, DL, D, DU, DU2,
$ IPIV, WORK, N, INFO )
END IF
GO TO 20
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
RETURN
*
* End of ZGTCON
*
END
|