1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
*> \brief \b ZGETRF2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* RECURSIVE SUBROUTINE ZGETRF2( M, N, A, LDA, IPIV, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGETRF2 computes an LU factorization of a general M-by-N matrix A
*> using partial pivoting with row interchanges.
*>
*> The factorization has the form
*> A = P * L * U
*> where P is a permutation matrix, L is lower triangular with unit
*> diagonal elements (lower trapezoidal if m > n), and U is upper
*> triangular (upper trapezoidal if m < n).
*>
*> This is the recursive version of the algorithm. It divides
*> the matrix into four submatrices:
*>
*> [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2
*> A = [ -----|----- ] with n1 = min(m,n)/2
*> [ A21 | A22 ] n2 = n-n1
*>
*> [ A11 ]
*> The subroutine calls itself to factor [ --- ],
*> [ A12 ]
*> [ A12 ]
*> do the swaps on [ --- ], solve A12, update A22,
*> [ A22 ]
*>
*> then calls itself to factor A22 and do the swaps on A21.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the M-by-N matrix to be factored.
*> On exit, the factors L and U from the factorization
*> A = P*L*U; the unit diagonal elements of L are not stored.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (min(M,N))
*> The pivot indices; for 1 <= i <= min(M,N), row i of the
*> matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
*> has been completed, but the factor U is exactly
*> singular, and division by zero will occur if it is used
*> to solve a system of equations.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complex16GEcomputational
*
* =====================================================================
RECURSIVE SUBROUTINE ZGETRF2( M, N, A, LDA, IPIV, INFO )
*
* -- LAPACK computational routine (version 3.6.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
DOUBLE PRECISION SFMIN
COMPLEX*16 TEMP
INTEGER I, IINFO, N1, N2
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
INTEGER IZAMAX
EXTERNAL DLAMCH, IZAMAX
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZSCAL, ZLASWP, ZTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGETRF2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
IF ( M.EQ.1 ) THEN
*
* Use unblocked code for one row case
* Just need to handle IPIV and INFO
*
IPIV( 1 ) = 1
IF ( A(1,1).EQ.ZERO )
$ INFO = 1
*
ELSE IF( N.EQ.1 ) THEN
*
* Use unblocked code for one column case
*
*
* Compute machine safe minimum
*
SFMIN = DLAMCH('S')
*
* Find pivot and test for singularity
*
I = IZAMAX( M, A( 1, 1 ), 1 )
IPIV( 1 ) = I
IF( A( I, 1 ).NE.ZERO ) THEN
*
* Apply the interchange
*
IF( I.NE.1 ) THEN
TEMP = A( 1, 1 )
A( 1, 1 ) = A( I, 1 )
A( I, 1 ) = TEMP
END IF
*
* Compute elements 2:M of the column
*
IF( ABS(A( 1, 1 )) .GE. SFMIN ) THEN
CALL ZSCAL( M-1, ONE / A( 1, 1 ), A( 2, 1 ), 1 )
ELSE
DO 10 I = 1, M-1
A( 1+I, 1 ) = A( 1+I, 1 ) / A( 1, 1 )
10 CONTINUE
END IF
*
ELSE
INFO = 1
END IF
ELSE
*
* Use recursive code
*
N1 = MIN( M, N ) / 2
N2 = N-N1
*
* [ A11 ]
* Factor [ --- ]
* [ A21 ]
*
CALL ZGETRF2( M, N1, A, LDA, IPIV, IINFO )
IF ( INFO.EQ.0 .AND. IINFO.GT.0 )
$ INFO = IINFO
*
* [ A12 ]
* Apply interchanges to [ --- ]
* [ A22 ]
*
CALL ZLASWP( N2, A( 1, N1+1 ), LDA, 1, N1, IPIV, 1 )
*
* Solve A12
*
CALL ZTRSM( 'L', 'L', 'N', 'U', N1, N2, ONE, A, LDA,
$ A( 1, N1+1 ), LDA )
*
* Update A22
*
CALL ZGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( N1+1, 1 ), LDA,
$ A( 1, N1+1 ), LDA, ONE, A( N1+1, N1+1 ), LDA )
*
* Factor A22
*
CALL ZGETRF2( M-N1, N2, A( N1+1, N1+1 ), LDA, IPIV( N1+1 ),
$ IINFO )
*
* Adjust INFO and the pivot indices
*
IF ( INFO.EQ.0 .AND. IINFO.GT.0 )
$ INFO = IINFO + N1
DO 20 I = N1+1, MIN( M, N )
IPIV( I ) = IPIV( I ) + N1
20 CONTINUE
*
* Apply interchanges to A21
*
CALL ZLASWP( N1, A( 1, 1 ), LDA, N1+1, MIN( M, N), IPIV, 1 )
*
END IF
RETURN
*
* End of ZGETRF2
*
END
|