summaryrefslogtreecommitdiff
path: root/SRC/zgetc2.f
blob: 549c1cfbeee1d713ccc189443b87d4a29f06e955 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
*> \brief \b ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGETC2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgetc2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgetc2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgetc2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGETC2( N, A, LDA, IPIV, JPIV, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * ), JPIV( * )
*       COMPLEX*16         A( LDA, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGETC2 computes an LU factorization, using complete pivoting, of the
*> n-by-n matrix A. The factorization has the form A = P * L * U * Q,
*> where P and Q are permutation matrices, L is lower triangular with
*> unit diagonal elements and U is upper triangular.
*>
*> This is a level 1 BLAS version of the algorithm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA, N)
*>          On entry, the n-by-n matrix to be factored.
*>          On exit, the factors L and U from the factorization
*>          A = P*L*U*Q; the unit diagonal elements of L are not stored.
*>          If U(k, k) appears to be less than SMIN, U(k, k) is given the
*>          value of SMIN, giving a nonsingular perturbed system.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1, N).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N).
*>          The pivot indices; for 1 <= i <= N, row i of the
*>          matrix has been interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[out] JPIV
*> \verbatim
*>          JPIV is INTEGER array, dimension (N).
*>          The pivot indices; for 1 <= j <= N, column j of the
*>          matrix has been interchanged with column JPIV(j).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>           = 0: successful exit
*>           > 0: if INFO = k, U(k, k) is likely to produce overflow if
*>                one tries to solve for x in Ax = b. So U is perturbed
*>                to avoid the overflow.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complex16GEauxiliary
*
*> \par Contributors:
*  ==================
*>
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*>     Umea University, S-901 87 Umea, Sweden.
*
*  =====================================================================
      SUBROUTINE ZGETC2( N, A, LDA, IPIV, JPIV, INFO )
*
*  -- LAPACK auxiliary routine (version 3.6.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * ), JPIV( * )
      COMPLEX*16         A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IP, IPV, J, JP, JPV
      DOUBLE PRECISION   BIGNUM, EPS, SMIN, SMLNUM, XMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGERU, ZSWAP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DCMPLX, MAX
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Set constants to control overflow
*
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
*
*     Handle the case N=1 by itself
*
      IF( N.EQ.1 ) THEN
         IPIV( 1 ) = 1
         JPIV( 1 ) = 1
         IF( ABS( A( 1, 1 ) ).LT.SMLNUM ) THEN
            INFO = 1
            A( 1, 1 ) = DCMPLX( SMLNUM, ZERO )
         END IF
         RETURN
      END IF
*
*     Factorize A using complete pivoting.
*     Set pivots less than SMIN to SMIN
*
      DO 40 I = 1, N - 1
*
*        Find max element in matrix A
*
         XMAX = ZERO
         DO 20 IP = I, N
            DO 10 JP = I, N
               IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN
                  XMAX = ABS( A( IP, JP ) )
                  IPV = IP
                  JPV = JP
               END IF
   10       CONTINUE
   20    CONTINUE
         IF( I.EQ.1 )
     $      SMIN = MAX( EPS*XMAX, SMLNUM )
*
*        Swap rows
*
         IF( IPV.NE.I )
     $      CALL ZSWAP( N, A( IPV, 1 ), LDA, A( I, 1 ), LDA )
         IPIV( I ) = IPV
*
*        Swap columns
*
         IF( JPV.NE.I )
     $      CALL ZSWAP( N, A( 1, JPV ), 1, A( 1, I ), 1 )
         JPIV( I ) = JPV
*
*        Check for singularity
*
         IF( ABS( A( I, I ) ).LT.SMIN ) THEN
            INFO = I
            A( I, I ) = DCMPLX( SMIN, ZERO )
         END IF
         DO 30 J = I + 1, N
            A( J, I ) = A( J, I ) / A( I, I )
   30    CONTINUE
         CALL ZGERU( N-I, N-I, -DCMPLX( ONE ), A( I+1, I ), 1,
     $               A( I, I+1 ), LDA, A( I+1, I+1 ), LDA )
   40 CONTINUE
*
      IF( ABS( A( N, N ) ).LT.SMIN ) THEN
         INFO = N
         A( N, N ) = DCMPLX( SMIN, ZERO )
      END IF
*
*     Set last pivots to N
*
      IPIV( N ) = N
      JPIV( N ) = N
*
      RETURN
*
*     End of ZGETC2
*
      END