1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
|
*> \brief \b ZGEJSV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEJSV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgejsv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgejsv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgejsv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
* M, N, A, LDA, SVA, U, LDU, V, LDV,
* CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* IMPLICIT NONE
* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK )
* DOUBLE PRECISION SVA( N ), RWORK( LRWORK )
* INTEGER IWORK( * )
* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
*> matrix [A], where M >= N. The SVD of [A] is written as
*>
*> [A] = [U] * [SIGMA] * [V]^*,
*>
*> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
*> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
*> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
*> the singular values of [A]. The columns of [U] and [V] are the left and
*> the right singular vectors of [A], respectively. The matrices [U] and [V]
*> are computed and stored in the arrays U and V, respectively. The diagonal
*> of [SIGMA] is computed and stored in the array SVA.
*> \endverbatim
*>
*> Arguments:
*> ==========
*>
*> \param[in] JOBA
*> \verbatim
*> JOBA is CHARACTER*1
*> Specifies the level of accuracy:
*> = 'C': This option works well (high relative accuracy) if A = B * D,
*> with well-conditioned B and arbitrary diagonal matrix D.
*> The accuracy cannot be spoiled by COLUMN scaling. The
*> accuracy of the computed output depends on the condition of
*> B, and the procedure aims at the best theoretical accuracy.
*> The relative error max_{i=1:N}|d sigma_i| / sigma_i is
*> bounded by f(M,N)*epsilon* cond(B), independent of D.
*> The input matrix is preprocessed with the QRF with column
*> pivoting. This initial preprocessing and preconditioning by
*> a rank revealing QR factorization is common for all values of
*> JOBA. Additional actions are specified as follows:
*> = 'E': Computation as with 'C' with an additional estimate of the
*> condition number of B. It provides a realistic error bound.
*> = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
*> D1, D2, and well-conditioned matrix C, this option gives
*> higher accuracy than the 'C' option. If the structure of the
*> input matrix is not known, and relative accuracy is
*> desirable, then this option is advisable. The input matrix A
*> is preprocessed with QR factorization with FULL (row and
*> column) pivoting.
*> = 'G' Computation as with 'F' with an additional estimate of the
*> condition number of B, where A=B*D. If A has heavily weighted
*> rows, then using this condition number gives too pessimistic
*> error bound.
*> = 'A': Small singular values are not well determined by the data
*> and are considered as noisy; the matrix is treated as
*> numerically rank defficient. The error in the computed
*> singular values is bounded by f(m,n)*epsilon*||A||.
*> The computed SVD A = U * S * V^* restores A up to
*> f(m,n)*epsilon*||A||.
*> This gives the procedure the licence to discard (set to zero)
*> all singular values below N*epsilon*||A||.
*> = 'R': Similar as in 'A'. Rank revealing property of the initial
*> QR factorization is used do reveal (using triangular factor)
*> a gap sigma_{r+1} < epsilon * sigma_r in which case the
*> numerical RANK is declared to be r. The SVD is computed with
*> absolute error bounds, but more accurately than with 'A'.
*> \endverbatim
*>
*> \param[in] JOBU
*> \verbatim
*> JOBU is CHARACTER*1
*> Specifies whether to compute the columns of U:
*> = 'U': N columns of U are returned in the array U.
*> = 'F': full set of M left sing. vectors is returned in the array U.
*> = 'W': U may be used as workspace of length M*N. See the description
*> of U.
*> = 'N': U is not computed.
*> \endverbatim
*>
*> \param[in] JOBV
*> \verbatim
*> JOBV is CHARACTER*1
*> Specifies whether to compute the matrix V:
*> = 'V': N columns of V are returned in the array V; Jacobi rotations
*> are not explicitly accumulated.
*> = 'J': N columns of V are returned in the array V, but they are
*> computed as the product of Jacobi rotations, if JOBT .EQ. 'N'.
*> = 'W': V may be used as workspace of length N*N. See the description
*> of V.
*> = 'N': V is not computed.
*> \endverbatim
*>
*> \param[in] JOBR
*> \verbatim
*> JOBR is CHARACTER*1
*> Specifies the RANGE for the singular values. Issues the licence to
*> set to zero small positive singular values if they are outside
*> specified range. If A .NE. 0 is scaled so that the largest singular
*> value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues
*> the licence to kill columns of A whose norm in c*A is less than
*> SQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
*> where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').
*> = 'N': Do not kill small columns of c*A. This option assumes that
*> BLAS and QR factorizations and triangular solvers are
*> implemented to work in that range. If the condition of A
*> is greater than BIG, use ZGESVJ.
*> = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
*> (roughly, as described above). This option is recommended.
*> ===========================
*> For computing the singular values in the FULL range [SFMIN,BIG]
*> use ZGESVJ.
*> \endverbatim
*>
*> \param[in] JOBT
*> \verbatim
*> JOBT is CHARACTER*1
*> If the matrix is square then the procedure may determine to use
*> transposed A if A^* seems to be better with respect to convergence.
*> If the matrix is not square, JOBT is ignored.
*> The decision is based on two values of entropy over the adjoint
*> orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
*> = 'T': transpose if entropy test indicates possibly faster
*> convergence of Jacobi process if A^* is taken as input. If A is
*> replaced with A^*, then the row pivoting is included automatically.
*> = 'N': do not speculate.
*> The option 'T' can be used to compute only the singular values, or
*> the full SVD (U, SIGMA and V). For only one set of singular vectors
*> (U or V), the caller should provide both U and V, as one of the
*> matrices is used as workspace if the matrix A is transposed.
*> The implementer can easily remove this constraint and make the
*> code more complicated. See the descriptions of U and V.
*> In general, this option is considered experimental, and 'N'; should
*> be preferred. This is subject to changes in the future.
*> \endverbatim
*>
*> \param[in] JOBP
*> \verbatim
*> JOBP is CHARACTER*1
*> Issues the licence to introduce structured perturbations to drown
*> denormalized numbers. This licence should be active if the
*> denormals are poorly implemented, causing slow computation,
*> especially in cases of fast convergence (!). For details see [1,2].
*> For the sake of simplicity, this perturbations are included only
*> when the full SVD or only the singular values are requested. The
*> implementer/user can easily add the perturbation for the cases of
*> computing one set of singular vectors.
*> = 'P': introduce perturbation
*> = 'N': do not perturb
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the input matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the input matrix A. M >= N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] SVA
*> \verbatim
*> SVA is DOUBLE PRECISION array, dimension (N)
*> On exit,
*> - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
*> computation SVA contains Euclidean column norms of the
*> iterated matrices in the array A.
*> - For WORK(1) .NE. WORK(2): The singular values of A are
*> (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
*> sigma_max(A) overflows or if small singular values have been
*> saved from underflow by scaling the input matrix A.
*> - If JOBR='R' then some of the singular values may be returned
*> as exact zeros obtained by "set to zero" because they are
*> below the numerical rank threshold or are denormalized numbers.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is COMPLEX*16 array, dimension ( LDU, N )
*> If JOBU = 'U', then U contains on exit the M-by-N matrix of
*> the left singular vectors.
*> If JOBU = 'F', then U contains on exit the M-by-M matrix of
*> the left singular vectors, including an ONB
*> of the orthogonal complement of the Range(A).
*> If JOBU = 'W' .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
*> then U is used as workspace if the procedure
*> replaces A with A^*. In that case, [V] is computed
*> in U as left singular vectors of A^* and then
*> copied back to the V array. This 'W' option is just
*> a reminder to the caller that in this case U is
*> reserved as workspace of length N*N.
*> If JOBU = 'N' U is not referenced, unless JOBT='T'.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U, LDU >= 1.
*> IF JOBU = 'U' or 'F' or 'W', then LDU >= M.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is COMPLEX*16 array, dimension ( LDV, N )
*> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
*> the right singular vectors;
*> If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
*> then V is used as workspace if the pprocedure
*> replaces A with A^*. In that case, [U] is computed
*> in V as right singular vectors of A^* and then
*> copied back to the U array. This 'W' option is just
*> a reminder to the caller that in this case V is
*> reserved as workspace of length N*N.
*> If JOBV = 'N' V is not referenced, unless JOBT='T'.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V, LDV >= 1.
*> If JOBV = 'V' or 'J' or 'W', then LDV >= N.
*> \endverbatim
*>
*> \param[out] CWORK
*> \verbatim
*> CWORK is COMPLEX*16 array, dimension (MAX(2,LWORK))
*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
*> LRWORK=-1), then on exit CWORK(1) contains the required length of
*> CWORK for the job parameters used in the call.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> Length of CWORK to confirm proper allocation of workspace.
*> LWORK depends on the job:
*>
*> 1. If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
*> 1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
*> LWORK >= 2*N+1. This is the minimal requirement.
*> ->> For optimal performance (blocked code) the optimal value
*> is LWORK >= N + (N+1)*NB. Here NB is the optimal
*> block size for ZGEQP3 and ZGEQRF.
*> In general, optimal LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ)).
*> 1.2. .. an estimate of the scaled condition number of A is
*> required (JOBA='E', or 'G'). In this case, LWORK the minimal
*> requirement is LWORK >= N*N + 2*N.
*> ->> For optimal performance (blocked code) the optimal value
*> is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
*> In general, the optimal length LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ),
*> N*N+LWORK(ZPOCON)).
*> 2. If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
*> (JOBU.EQ.'N')
*> 2.1 .. no scaled condition estimate requested (JOBE.EQ.'N'):
*> -> the minimal requirement is LWORK >= 3*N.
*> -> For optimal performance,
*> LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
*> ZUNMLQ. In general, the optimal length LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(ZGESVJ),
*> N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
*> 2.2 .. an estimate of the scaled condition number of A is
*> required (JOBA='E', or 'G').
*> -> the minimal requirement is LWORK >= 3*N.
*> -> For optimal performance,
*> LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
*> ZUNMLQ. In general, the optimal length LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3), LWORK(ZPOCON), N+LWORK(ZGESVJ),
*> N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
*> 3. If SIGMA and the left singular vectors are needed
*> 3.1 .. no scaled condition estimate requested (JOBE.EQ.'N'):
*> -> the minimal requirement is LWORK >= 3*N.
*> -> For optimal performance:
*> if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
*> In general, the optimal length LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
*> 3.2 .. an estimate of the scaled condition number of A is
*> required (JOBA='E', or 'G').
*> -> the minimal requirement is LWORK >= 3*N.
*> -> For optimal performance:
*> if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
*> where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
*> In general, the optimal length LWORK is computed as
*> LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON),
*> 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
*> 4. If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and
*> 4.1. if JOBV.EQ.'V'
*> the minimal requirement is LWORK >= 5*N+2*N*N.
*> 4.2. if JOBV.EQ.'J' the minimal requirement is
*> LWORK >= 4*N+N*N.
*> In both cases, the allocated CWORK can accommodate blocked runs
*> of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, ZUNMLQ.
*>
*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
*> LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
*> minimal length of CWORK for the job parameters used in the call.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (MAX(7,LWORK))
*> On exit,
*> RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
*> such that SCALE*SVA(1:N) are the computed singular values
*> of A. (See the description of SVA().)
*> RWORK(2) = See the description of RWORK(1).
*> RWORK(3) = SCONDA is an estimate for the condition number of
*> column equilibrated A. (If JOBA .EQ. 'E' or 'G')
*> SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
*> It is computed using SPOCON. It holds
*> N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
*> where R is the triangular factor from the QRF of A.
*> However, if R is truncated and the numerical rank is
*> determined to be strictly smaller than N, SCONDA is
*> returned as -1, thus indicating that the smallest
*> singular values might be lost.
*>
*> If full SVD is needed, the following two condition numbers are
*> useful for the analysis of the algorithm. They are provied for
*> a developer/implementer who is familiar with the details of
*> the method.
*>
*> RWORK(4) = an estimate of the scaled condition number of the
*> triangular factor in the first QR factorization.
*> RWORK(5) = an estimate of the scaled condition number of the
*> triangular factor in the second QR factorization.
*> The following two parameters are computed if JOBT .EQ. 'T'.
*> They are provided for a developer/implementer who is familiar
*> with the details of the method.
*> RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
*> of diag(A^* * A) / Trace(A^* * A) taken as point in the
*> probability simplex.
*> RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
*> If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
*> LRWORK=-1), then on exit RWORK(1) contains the required length of
*> RWORK for the job parameters used in the call.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> Length of RWORK to confirm proper allocation of workspace.
*> LRWORK depends on the job:
*>
*> 1. If only the singular values are requested i.e. if
*> LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
*> then:
*> 1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
*> then: LRWORK = max( 7, 2 * M ).
*> 1.2. Otherwise, LRWORK = max( 7, N ).
*> 2. If singular values with the right singular vectors are requested
*> i.e. if
*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
*> .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
*> then:
*> 2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
*> then LRWORK = max( 7, 2 * M ).
*> 2.2. Otherwise, LRWORK = max( 7, N ).
*> 3. If singular values with the left singular vectors are requested, i.e. if
*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
*> .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
*> then:
*> 3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
*> then LRWORK = max( 7, 2 * M ).
*> 3.2. Otherwise, LRWORK = max( 7, N ).
*> 4. If singular values with both the left and the right singular vectors
*> are requested, i.e. if
*> (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
*> (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
*> then:
*> 4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
*> then LRWORK = max( 7, 2 * M ).
*> 4.2. Otherwise, LRWORK = max( 7, N ).
*>
*> If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and
*> the length of RWORK is returned in RWORK(1).
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, of dimension at least 4, that further depends
*> on the job:
*>
*> 1. If only the singular values are requested then:
*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
*> 2. If the singular values and the right singular vectors are requested then:
*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
*> 3. If the singular values and the left singular vectors are requested then:
*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
*> 4. If the singular values with both the left and the right singular vectors
*> are requested, then:
*> 4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
*> then the length of IWORK is N+M; otherwise the length of IWORK is N.
*> 4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
*> If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
*> then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
*>
*> On exit,
*> IWORK(1) = the numerical rank determined after the initial
*> QR factorization with pivoting. See the descriptions
*> of JOBA and JOBR.
*> IWORK(2) = the number of the computed nonzero singular values
*> IWORK(3) = if nonzero, a warning message:
*> If IWORK(3).EQ.1 then some of the column norms of A
*> were denormalized floats. The requested high accuracy
*> is not warranted by the data.
*> IWORK(4) = 1 or -1. If IWORK(4) .EQ. 1, then the procedure used A^* to
*> do the job as specified by the JOB parameters.
*> If the call to ZGEJSV is a workspace query (indicated by LWORK .EQ. -1 or
*> LRWORK .EQ. -1), then on exit IWORK(1) contains the required length of
*> IWORK for the job parameters used in the call.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> < 0 : if INFO = -i, then the i-th argument had an illegal value.
*> = 0 : successful exit;
*> > 0 : ZGEJSV did not converge in the maximal allowed number
*> of sweeps. The computed values may be inaccurate.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complex16GEsing
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3,
*> ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an
*> additional row pivoting can be used as a preprocessor, which in some
*> cases results in much higher accuracy. An example is matrix A with the
*> structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
*> diagonal matrices and C is well-conditioned matrix. In that case, complete
*> pivoting in the first QR factorizations provides accuracy dependent on the
*> condition number of C, and independent of D1, D2. Such higher accuracy is
*> not completely understood theoretically, but it works well in practice.
*> Further, if A can be written as A = B*D, with well-conditioned B and some
*> diagonal D, then the high accuracy is guaranteed, both theoretically and
*> in software, independent of D. For more details see [1], [2].
*> The computational range for the singular values can be the full range
*> ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
*> & LAPACK routines called by ZGEJSV are implemented to work in that range.
*> If that is not the case, then the restriction for safe computation with
*> the singular values in the range of normalized IEEE numbers is that the
*> spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
*> overflow. This code (ZGEJSV) is best used in this restricted range,
*> meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
*> returned as zeros. See JOBR for details on this.
*> Further, this implementation is somewhat slower than the one described
*> in [1,2] due to replacement of some non-LAPACK components, and because
*> the choice of some tuning parameters in the iterative part (ZGESVJ) is
*> left to the implementer on a particular machine.
*> The rank revealing QR factorization (in this code: ZGEQP3) should be
*> implemented as in [3]. We have a new version of ZGEQP3 under development
*> that is more robust than the current one in LAPACK, with a cleaner cut in
*> rank deficient cases. It will be available in the SIGMA library [4].
*> If M is much larger than N, it is obvious that the initial QRF with
*> column pivoting can be preprocessed by the QRF without pivoting. That
*> well known trick is not used in ZGEJSV because in some cases heavy row
*> weighting can be treated with complete pivoting. The overhead in cases
*> M much larger than N is then only due to pivoting, but the benefits in
*> terms of accuracy have prevailed. The implementer/user can incorporate
*> this extra QRF step easily. The implementer can also improve data movement
*> (matrix transpose, matrix copy, matrix transposed copy) - this
*> implementation of ZGEJSV uses only the simplest, naive data movement.
*> \endverbatim
*
*> \par Contributor:
* ==================
*>
*> Zlatko Drmac, Department of Mathematics, Faculty of Science,
*> University of Zagreb (Zagreb, Croatia); drmac@math.hr
*
*> \par References:
* ================
*>
*> \verbatim
*>
*> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
*> LAPACK Working note 169.
*> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
*> LAPACK Working note 170.
*> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
*> factorization software - a case study.
*> ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
*> LAPACK Working note 176.
*> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
*> QSVD, (H,K)-SVD computations.
*> Department of Mathematics, University of Zagreb, 2008, 2016.
*> \endverbatim
*
*> \par Bugs, examples and comments:
* =================================
*>
*> Please report all bugs and send interesting examples and/or comments to
*> drmac@math.hr. Thank you.
*>
* =====================================================================
SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
$ M, N, A, LDA, SVA, U, LDU, V, LDV,
$ CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
IMPLICIT NONE
INTEGER INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ),
$ CWORK( LWORK )
DOUBLE PRECISION SVA( N ), RWORK( LRWORK )
INTEGER IWORK( * )
CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
* ..
*
* ===========================================================================
*
* .. Local Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) )
* ..
* .. Local Scalars ..
COMPLEX*16 CTEMP
DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1,
$ COND_OK, CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN,
$ MAXPRJ, SCALEM, SCONDA, SFMIN, SMALL, TEMP1,
$ USCAL1, USCAL2, XSC
INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING
LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LQUERY,
$ LSVEC, L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN, NOSCAL,
$ ROWPIV, RSVEC, TRANSP
*
INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
INTEGER LWCON, LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
$ LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
INTEGER LWRK_ZGELQF, LWRK_ZGEQP3, LWRK_ZGEQP3N, LWRK_ZGEQRF,
$ LWRK_ZGESVJ, LWRK_ZGESVJV, LWRK_ZGESVJU, LWRK_ZUNMLQ,
$ LWRK_ZUNMQR, LWRK_ZUNMQRM
* ..
* .. Local Arrays
COMPLEX*16 CDUMMY(1)
DOUBLE PRECISION RDUMMY(1)
*
* .. Intrinsic Functions ..
INTRINSIC ABS, DCMPLX, CONJG, DLOG, MAX, MIN, DBLE, NINT, SQRT
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DZNRM2
INTEGER IDAMAX, IZAMAX
LOGICAL LSAME
EXTERNAL IDAMAX, IZAMAX, LSAME, DLAMCH, DZNRM2
* ..
* .. External Subroutines ..
EXTERNAL DLASSQ, ZCOPY, ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLAPMR,
$ ZLASCL, DLASCL, ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ,
$ ZUNMQR, ZPOCON, DSCAL, ZDSCAL, ZSWAP, ZTRSM, ZLACGV,
$ XERBLA
*
EXTERNAL ZGESVJ
* ..
*
* Test the input arguments
*
LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
JRACC = LSAME( JOBV, 'J' )
RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC
ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
L2RANK = LSAME( JOBA, 'R' )
L2ABER = LSAME( JOBA, 'A' )
ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
L2KILL = LSAME( JOBR, 'R' )
DEFR = LSAME( JOBR, 'N' )
L2PERT = LSAME( JOBP, 'P' )
*
LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
*
IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
$ ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
INFO = - 1
ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
$ ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
INFO = - 2
ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
$ ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
INFO = - 3
ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN
INFO = - 4
ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN
INFO = - 5
ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
INFO = - 6
ELSE IF ( M .LT. 0 ) THEN
INFO = - 7
ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
INFO = - 8
ELSE IF ( LDA .LT. M ) THEN
INFO = - 10
ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
INFO = - 13
ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
INFO = - 15
ELSE
* #:)
INFO = 0
END IF
*
IF ( INFO .EQ. 0 ) THEN
* .. compute the minimal and the optimal workspace lengths
* [[The expressions for computing the minimal and the optimal
* values of LCWORK, LRWORK are written with a lot of redundancy and
* can be simplified. However, this verbose form is useful for
* maintenance and modifications of the code.]]
*
* .. minimal workspace length for ZGEQP3 of an M x N matrix,
* ZGEQRF of an N x N matrix, ZGELQF of an N x N matrix,
* ZUNMLQ for computing N x N matrix, ZUNMQR for computing N x N
* matrix, ZUNMQR for computing M x N matrix, respectively.
LWQP3 = N+1
LWQRF = MAX( 1, N )
LWLQF = MAX( 1, N )
LWUNMLQ = MAX( 1, N )
LWUNMQR = MAX( 1, N )
LWUNMQRM = MAX( 1, M )
* .. minimal workspace length for ZPOCON of an N x N matrix
LWCON = 2 * N
* .. minimal workspace length for ZGESVJ of an N x N matrix,
* without and with explicit accumulation of Jacobi rotations
LWSVDJ = MAX( 2 * N, 1 )
LWSVDJV = MAX( 2 * N, 1 )
* .. minimal REAL workspace length for ZGEQP3, ZPOCON, ZGESVJ
LRWQP3 = N
LRWCON = N
LRWSVDJ = N
IF ( LQUERY ) THEN
CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1,
$ RDUMMY, IERR )
LWRK_ZGEQP3 = CDUMMY(1)
CALL ZGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
LWRK_ZGEQRF = CDUMMY(1)
CALL ZGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
LWRK_ZGELQF = CDUMMY(1)
END IF
MINWRK = 2
OPTWRK = 2
MINIWRK = N
IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
* .. minimal and optimal sizes of the complex workspace if
* only the singular values are requested
IF ( ERREST ) THEN
MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
ELSE
MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
END IF
IF ( LQUERY ) THEN
CALL ZGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V,
$ LDV, CDUMMY, -1, RDUMMY, -1, IERR )
LWRK_ZGESVJ = CDUMMY(1)
IF ( ERREST ) THEN
OPTWRK = MAX( N+LWRK_ZGEQP3, N**2+LWCON,
$ N+LWRK_ZGEQRF, LWRK_ZGESVJ )
ELSE
OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWRK_ZGEQRF,
$ LWRK_ZGESVJ )
END IF
END IF
IF ( L2TRAN .OR. ROWPIV ) THEN
IF ( ERREST ) THEN
MINRWRK = MAX( 7, 2*M, LRWQP3, LRWCON, LRWSVDJ )
ELSE
MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
END IF
ELSE
IF ( ERREST ) THEN
MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
ELSE
MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
END IF
END IF
IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
* .. minimal and optimal sizes of the complex workspace if the
* singular values and the right singular vectors are requested
IF ( ERREST ) THEN
MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,
$ 2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
ELSE
MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF,
$ N+LWSVDJ, N+LWUNMLQ )
END IF
IF ( LQUERY ) THEN
CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
$ LDA, CDUMMY, -1, RDUMMY, -1, IERR )
LWRK_ZGESVJ = CDUMMY(1)
CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
$ V, LDV, CDUMMY, -1, IERR )
LWRK_ZUNMLQ = CDUMMY(1)
IF ( ERREST ) THEN
OPTWRK = MAX( N+LWRK_ZGEQP3, LWCON, LWRK_ZGESVJ,
$ N+LWRK_ZGELQF, 2*N+LWRK_ZGEQRF,
$ N+LWRK_ZGESVJ, N+LWRK_ZUNMLQ )
ELSE
OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVJ,N+LWRK_ZGELQF,
$ 2*N+LWRK_ZGEQRF, N+LWRK_ZGESVJ,
$ N+LWRK_ZUNMLQ )
END IF
END IF
IF ( L2TRAN .OR. ROWPIV ) THEN
IF ( ERREST ) THEN
MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
ELSE
MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
END IF
ELSE
IF ( ERREST ) THEN
MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
ELSE
MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
END IF
END IF
IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN
* .. minimal and optimal sizes of the complex workspace if the
* singular values and the left singular vectors are requested
IF ( ERREST ) THEN
MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
ELSE
MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
END IF
IF ( LQUERY ) THEN
CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
$ LDA, CDUMMY, -1, RDUMMY, -1, IERR )
LWRK_ZGESVJ = CDUMMY(1)
CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
$ LDU, CDUMMY, -1, IERR )
LWRK_ZUNMQRM = CDUMMY(1)
IF ( ERREST ) THEN
OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, N+LWRK_ZGEQRF,
$ LWRK_ZGESVJ, LWRK_ZUNMQRM )
ELSE
OPTWRK = N + MAX( LWRK_ZGEQP3, N+LWRK_ZGEQRF,
$ LWRK_ZGESVJ, LWRK_ZUNMQRM )
END IF
END IF
IF ( L2TRAN .OR. ROWPIV ) THEN
IF ( ERREST ) THEN
MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
ELSE
MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ )
END IF
ELSE
IF ( ERREST ) THEN
MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
ELSE
MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
END IF
END IF
IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
ELSE
* .. minimal and optimal sizes of the complex workspace if the
* full SVD is requested
IF ( .NOT. JRACC ) THEN
IF ( ERREST ) THEN
MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+N**2+LWCON,
$ 2*N+LWQRF, 2*N+LWQP3,
$ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON,
$ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
$ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
$ N+N**2+LWSVDJ, N+LWUNMQRM )
ELSE
MINWRK = MAX( N+LWQP3, 2*N+N**2+LWCON,
$ 2*N+LWQRF, 2*N+LWQP3,
$ 2*N+N**2+N+LWLQF, 2*N+N**2+N+N**2+LWCON,
$ 2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
$ 2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
$ N+N**2+LWSVDJ, N+LWUNMQRM )
END IF
MINIWRK = MINIWRK + N
IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
ELSE
IF ( ERREST ) THEN
MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF,
$ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR,
$ N+LWUNMQRM )
ELSE
MINWRK = MAX( N+LWQP3, 2*N+LWQRF,
$ 2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR,
$ N+LWUNMQRM )
END IF
IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
END IF
IF ( LQUERY ) THEN
CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
$ LDU, CDUMMY, -1, IERR )
LWRK_ZUNMQRM = CDUMMY(1)
CALL ZUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
$ LDU, CDUMMY, -1, IERR )
LWRK_ZUNMQR = CDUMMY(1)
IF ( .NOT. JRACC ) THEN
CALL ZGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1,
$ RDUMMY, IERR )
LWRK_ZGEQP3N = CDUMMY(1)
CALL ZGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
$ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
LWRK_ZGESVJ = CDUMMY(1)
CALL ZGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
$ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
LWRK_ZGESVJU = CDUMMY(1)
CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
$ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
LWRK_ZGESVJV = CDUMMY(1)
CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
$ V, LDV, CDUMMY, -1, IERR )
LWRK_ZUNMLQ = CDUMMY(1)
IF ( ERREST ) THEN
OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,
$ 2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF,
$ 2*N+LWRK_ZGEQP3N,
$ 2*N+N**2+N+LWRK_ZGELQF,
$ 2*N+N**2+N+N**2+LWCON,
$ 2*N+N**2+N+LWRK_ZGESVJ,
$ 2*N+N**2+N+LWRK_ZGESVJV,
$ 2*N+N**2+N+LWRK_ZUNMQR,
$ 2*N+N**2+N+LWRK_ZUNMLQ,
$ N+N**2+LWRK_ZGESVJU,
$ N+LWRK_ZUNMQRM )
ELSE
OPTWRK = MAX( N+LWRK_ZGEQP3,
$ 2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF,
$ 2*N+LWRK_ZGEQP3N,
$ 2*N+N**2+N+LWRK_ZGELQF,
$ 2*N+N**2+N+N**2+LWCON,
$ 2*N+N**2+N+LWRK_ZGESVJ,
$ 2*N+N**2+N+LWRK_ZGESVJV,
$ 2*N+N**2+N+LWRK_ZUNMQR,
$ 2*N+N**2+N+LWRK_ZUNMLQ,
$ N+N**2+LWRK_ZGESVJU,
$ N+LWRK_ZUNMQRM )
END IF
ELSE
CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
$ N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
LWRK_ZGESVJV = CDUMMY(1)
CALL ZUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY,
$ V, LDV, CDUMMY, -1, IERR )
LWRK_ZUNMQR = CDUMMY(1)
CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
$ LDU, CDUMMY, -1, IERR )
LWRK_ZUNMQRM = CDUMMY(1)
IF ( ERREST ) THEN
OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,
$ 2*N+LWRK_ZGEQRF, 2*N+N**2,
$ 2*N+N**2+LWRK_ZGESVJV,
$ 2*N+N**2+N+LWRK_ZUNMQR,N+LWRK_ZUNMQRM )
ELSE
OPTWRK = MAX( N+LWRK_ZGEQP3, 2*N+LWRK_ZGEQRF,
$ 2*N+N**2, 2*N+N**2+LWRK_ZGESVJV,
$ 2*N+N**2+N+LWRK_ZUNMQR,
$ N+LWRK_ZUNMQRM )
END IF
END IF
END IF
IF ( L2TRAN .OR. ROWPIV ) THEN
MINRWRK = MAX( 7, 2*M, LRWQP3, LRWSVDJ, LRWCON )
ELSE
MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
END IF
END IF
MINWRK = MAX( 2, MINWRK )
OPTWRK = MAX( 2, OPTWRK )
IF ( LWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = - 17
IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19
END IF
*
IF ( INFO .NE. 0 ) THEN
* #:(
CALL XERBLA( 'ZGEJSV', - INFO )
RETURN
ELSE IF ( LQUERY ) THEN
CWORK(1) = OPTWRK
CWORK(2) = MINWRK
RWORK(1) = MINRWRK
IWORK(1) = MAX( 4, MINIWRK )
RETURN
END IF
*
* Quick return for void matrix (Y3K safe)
* #:)
IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
IWORK(1:4) = 0
RWORK(1:7) = 0
RETURN
ENDIF
*
* Determine whether the matrix U should be M x N or M x M
*
IF ( LSVEC ) THEN
N1 = N
IF ( LSAME( JOBU, 'F' ) ) N1 = M
END IF
*
* Set numerical parameters
*
*! NOTE: Make sure DLAMCH() does not fail on the target architecture.
*
EPSLN = DLAMCH('Epsilon')
SFMIN = DLAMCH('SafeMinimum')
SMALL = SFMIN / EPSLN
BIG = DLAMCH('O')
* BIG = ONE / SFMIN
*
* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
*
*(!) If necessary, scale SVA() to protect the largest norm from
* overflow. It is possible that this scaling pushes the smallest
* column norm left from the underflow threshold (extreme case).
*
SCALEM = ONE / SQRT(DBLE(M)*DBLE(N))
NOSCAL = .TRUE.
GOSCAL = .TRUE.
DO 1874 p = 1, N
AAPP = ZERO
AAQQ = ONE
CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ )
IF ( AAPP .GT. BIG ) THEN
INFO = - 9
CALL XERBLA( 'ZGEJSV', -INFO )
RETURN
END IF
AAQQ = SQRT(AAQQ)
IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN
SVA(p) = AAPP * AAQQ
ELSE
NOSCAL = .FALSE.
SVA(p) = AAPP * ( AAQQ * SCALEM )
IF ( GOSCAL ) THEN
GOSCAL = .FALSE.
CALL DSCAL( p-1, SCALEM, SVA, 1 )
END IF
END IF
1874 CONTINUE
*
IF ( NOSCAL ) SCALEM = ONE
*
AAPP = ZERO
AAQQ = BIG
DO 4781 p = 1, N
AAPP = MAX( AAPP, SVA(p) )
IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
4781 CONTINUE
*
* Quick return for zero M x N matrix
* #:)
IF ( AAPP .EQ. ZERO ) THEN
IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU )
IF ( RSVEC ) CALL ZLASET( 'G', N, N, CZERO, CONE, V, LDV )
RWORK(1) = ONE
RWORK(2) = ONE
IF ( ERREST ) RWORK(3) = ONE
IF ( LSVEC .AND. RSVEC ) THEN
RWORK(4) = ONE
RWORK(5) = ONE
END IF
IF ( L2TRAN ) THEN
RWORK(6) = ZERO
RWORK(7) = ZERO
END IF
IWORK(1) = 0
IWORK(2) = 0
IWORK(3) = 0
IWORK(4) = -1
RETURN
END IF
*
* Issue warning if denormalized column norms detected. Override the
* high relative accuracy request. Issue licence to kill nonzero columns
* (set them to zero) whose norm is less than sigma_max / BIG (roughly).
* #:(
WARNING = 0
IF ( AAQQ .LE. SFMIN ) THEN
L2RANK = .TRUE.
L2KILL = .TRUE.
WARNING = 1
END IF
*
* Quick return for one-column matrix
* #:)
IF ( N .EQ. 1 ) THEN
*
IF ( LSVEC ) THEN
CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU )
* computing all M left singular vectors of the M x 1 matrix
IF ( N1 .NE. N ) THEN
CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 )
END IF
END IF
IF ( RSVEC ) THEN
V(1,1) = CONE
END IF
IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
SVA(1) = SVA(1) / SCALEM
SCALEM = ONE
END IF
RWORK(1) = ONE / SCALEM
RWORK(2) = ONE
IF ( SVA(1) .NE. ZERO ) THEN
IWORK(1) = 1
IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
IWORK(2) = 1
ELSE
IWORK(2) = 0
END IF
ELSE
IWORK(1) = 0
IWORK(2) = 0
END IF
IWORK(3) = 0
IWORK(4) = -1
IF ( ERREST ) RWORK(3) = ONE
IF ( LSVEC .AND. RSVEC ) THEN
RWORK(4) = ONE
RWORK(5) = ONE
END IF
IF ( L2TRAN ) THEN
RWORK(6) = ZERO
RWORK(7) = ZERO
END IF
RETURN
*
END IF
*
TRANSP = .FALSE.
*
AATMAX = -ONE
AATMIN = BIG
IF ( ROWPIV .OR. L2TRAN ) THEN
*
* Compute the row norms, needed to determine row pivoting sequence
* (in the case of heavily row weighted A, row pivoting is strongly
* advised) and to collect information needed to compare the
* structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
*
IF ( L2TRAN ) THEN
DO 1950 p = 1, M
XSC = ZERO
TEMP1 = ONE
CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
* ZLASSQ gets both the ell_2 and the ell_infinity norm
* in one pass through the vector
RWORK(M+p) = XSC * SCALEM
RWORK(p) = XSC * (SCALEM*SQRT(TEMP1))
AATMAX = MAX( AATMAX, RWORK(p) )
IF (RWORK(p) .NE. ZERO)
$ AATMIN = MIN(AATMIN,RWORK(p))
1950 CONTINUE
ELSE
DO 1904 p = 1, M
RWORK(M+p) = SCALEM*ABS( A(p,IZAMAX(N,A(p,1),LDA)) )
AATMAX = MAX( AATMAX, RWORK(M+p) )
AATMIN = MIN( AATMIN, RWORK(M+p) )
1904 CONTINUE
END IF
*
END IF
*
* For square matrix A try to determine whether A^* would be better
* input for the preconditioned Jacobi SVD, with faster convergence.
* The decision is based on an O(N) function of the vector of column
* and row norms of A, based on the Shannon entropy. This should give
* the right choice in most cases when the difference actually matters.
* It may fail and pick the slower converging side.
*
ENTRA = ZERO
ENTRAT = ZERO
IF ( L2TRAN ) THEN
*
XSC = ZERO
TEMP1 = ONE
CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
TEMP1 = ONE / TEMP1
*
ENTRA = ZERO
DO 1113 p = 1, N
BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1
IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
1113 CONTINUE
ENTRA = - ENTRA / DLOG(DBLE(N))
*
* Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
* It is derived from the diagonal of A^* * A. Do the same with the
* diagonal of A * A^*, compute the entropy of the corresponding
* probability distribution. Note that A * A^* and A^* * A have the
* same trace.
*
ENTRAT = ZERO
DO 1114 p = 1, M
BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
1114 CONTINUE
ENTRAT = - ENTRAT / DLOG(DBLE(M))
*
* Analyze the entropies and decide A or A^*. Smaller entropy
* usually means better input for the algorithm.
*
TRANSP = ( ENTRAT .LT. ENTRA )
*
* If A^* is better than A, take the adjoint of A. This is allowed
* only for square matrices, M=N.
IF ( TRANSP ) THEN
* In an optimal implementation, this trivial transpose
* should be replaced with faster transpose.
DO 1115 p = 1, N - 1
A(p,p) = CONJG(A(p,p))
DO 1116 q = p + 1, N
CTEMP = CONJG(A(q,p))
A(q,p) = CONJG(A(p,q))
A(p,q) = CTEMP
1116 CONTINUE
1115 CONTINUE
A(N,N) = CONJG(A(N,N))
DO 1117 p = 1, N
RWORK(M+p) = SVA(p)
SVA(p) = RWORK(p)
* previously computed row 2-norms are now column 2-norms
* of the transposed matrix
1117 CONTINUE
TEMP1 = AAPP
AAPP = AATMAX
AATMAX = TEMP1
TEMP1 = AAQQ
AAQQ = AATMIN
AATMIN = TEMP1
KILL = LSVEC
LSVEC = RSVEC
RSVEC = KILL
IF ( LSVEC ) N1 = N
*
ROWPIV = .TRUE.
END IF
*
END IF
* END IF L2TRAN
*
* Scale the matrix so that its maximal singular value remains less
* than SQRT(BIG) -- the matrix is scaled so that its maximal column
* has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
* SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and
* BLAS routines that, in some implementations, are not capable of
* working in the full interval [SFMIN,BIG] and that they may provoke
* overflows in the intermediate results. If the singular values spread
* from SFMIN to BIG, then ZGESVJ will compute them. So, in that case,
* one should use ZGESVJ instead of ZGEJSV.
* >> change in the April 2016 update: allow bigger range, i.e. the
* largest column is allowed up to BIG/N and ZGESVJ will do the rest.
BIG1 = SQRT( BIG )
TEMP1 = SQRT( BIG / DBLE(N) )
* TEMP1 = BIG/DBLE(N)
*
CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
AAQQ = ( AAQQ / AAPP ) * TEMP1
ELSE
AAQQ = ( AAQQ * TEMP1 ) / AAPP
END IF
TEMP1 = TEMP1 * SCALEM
CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
*
* To undo scaling at the end of this procedure, multiply the
* computed singular values with USCAL2 / USCAL1.
*
USCAL1 = TEMP1
USCAL2 = AAPP
*
IF ( L2KILL ) THEN
* L2KILL enforces computation of nonzero singular values in
* the restricted range of condition number of the initial A,
* sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
XSC = SQRT( SFMIN )
ELSE
XSC = SMALL
*
* Now, if the condition number of A is too big,
* sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
* as a precaution measure, the full SVD is computed using ZGESVJ
* with accumulated Jacobi rotations. This provides numerically
* more robust computation, at the cost of slightly increased run
* time. Depending on the concrete implementation of BLAS and LAPACK
* (i.e. how they behave in presence of extreme ill-conditioning) the
* implementor may decide to remove this switch.
IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
JRACC = .TRUE.
END IF
*
END IF
IF ( AAQQ .LT. XSC ) THEN
DO 700 p = 1, N
IF ( SVA(p) .LT. XSC ) THEN
CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
SVA(p) = ZERO
END IF
700 CONTINUE
END IF
*
* Preconditioning using QR factorization with pivoting
*
IF ( ROWPIV ) THEN
* Optional row permutation (Bjoerck row pivoting):
* A result by Cox and Higham shows that the Bjoerck's
* row pivoting combined with standard column pivoting
* has similar effect as Powell-Reid complete pivoting.
* The ell-infinity norms of A are made nonincreasing.
IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN
IWOFF = 2*N
ELSE
IWOFF = N
END IF
DO 1952 p = 1, M - 1
q = IDAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
IWORK(IWOFF+p) = q
IF ( p .NE. q ) THEN
TEMP1 = RWORK(M+p)
RWORK(M+p) = RWORK(M+q)
RWORK(M+q) = TEMP1
END IF
1952 CONTINUE
CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
END IF
*
* End of the preparation phase (scaling, optional sorting and
* transposing, optional flushing of small columns).
*
* Preconditioning
*
* If the full SVD is needed, the right singular vectors are computed
* from a matrix equation, and for that we need theoretical analysis
* of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF.
* In all other cases the first RR QRF can be chosen by other criteria
* (eg speed by replacing global with restricted window pivoting, such
* as in xGEQPX from TOMS # 782). Good results will be obtained using
* xGEQPX with properly (!) chosen numerical parameters.
* Any improvement of ZGEQP3 improves overal performance of ZGEJSV.
*
* A * P1 = Q1 * [ R1^* 0]^*:
DO 1963 p = 1, N
* .. all columns are free columns
IWORK(p) = 0
1963 CONTINUE
CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
$ RWORK, IERR )
*
* The upper triangular matrix R1 from the first QRF is inspected for
* rank deficiency and possibilities for deflation, or possible
* ill-conditioning. Depending on the user specified flag L2RANK,
* the procedure explores possibilities to reduce the numerical
* rank by inspecting the computed upper triangular factor. If
* L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of
* A + dA, where ||dA|| <= f(M,N)*EPSLN.
*
NR = 1
IF ( L2ABER ) THEN
* Standard absolute error bound suffices. All sigma_i with
* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
* agressive enforcement of lower numerical rank by introducing a
* backward error of the order of N*EPSLN*||A||.
TEMP1 = SQRT(DBLE(N))*EPSLN
DO 3001 p = 2, N
IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
NR = NR + 1
ELSE
GO TO 3002
END IF
3001 CONTINUE
3002 CONTINUE
ELSE IF ( L2RANK ) THEN
* .. similarly as above, only slightly more gentle (less agressive).
* Sudden drop on the diagonal of R1 is used as the criterion for
* close-to-rank-deficient.
TEMP1 = SQRT(SFMIN)
DO 3401 p = 2, N
IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
$ ( ABS(A(p,p)) .LT. SMALL ) .OR.
$ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
NR = NR + 1
3401 CONTINUE
3402 CONTINUE
*
ELSE
* The goal is high relative accuracy. However, if the matrix
* has high scaled condition number the relative accuracy is in
* general not feasible. Later on, a condition number estimator
* will be deployed to estimate the scaled condition number.
* Here we just remove the underflowed part of the triangular
* factor. This prevents the situation in which the code is
* working hard to get the accuracy not warranted by the data.
TEMP1 = SQRT(SFMIN)
DO 3301 p = 2, N
IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
$ ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
NR = NR + 1
3301 CONTINUE
3302 CONTINUE
*
END IF
*
ALMORT = .FALSE.
IF ( NR .EQ. N ) THEN
MAXPRJ = ONE
DO 3051 p = 2, N
TEMP1 = ABS(A(p,p)) / SVA(IWORK(p))
MAXPRJ = MIN( MAXPRJ, TEMP1 )
3051 CONTINUE
IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
END IF
*
*
SCONDA = - ONE
CONDR1 = - ONE
CONDR2 = - ONE
*
IF ( ERREST ) THEN
IF ( N .EQ. NR ) THEN
IF ( RSVEC ) THEN
* .. V is available as workspace
CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
DO 3053 p = 1, N
TEMP1 = SVA(IWORK(p))
CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 )
3053 CONTINUE
IF ( LSVEC )THEN
CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
$ CWORK(N+1), RWORK, IERR )
ELSE
CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
$ CWORK, RWORK, IERR )
END IF
*
ELSE IF ( LSVEC ) THEN
* .. U is available as workspace
CALL ZLACPY( 'U', N, N, A, LDA, U, LDU )
DO 3054 p = 1, N
TEMP1 = SVA(IWORK(p))
CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 )
3054 CONTINUE
CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1,
$ CWORK(N+1), RWORK, IERR )
ELSE
CALL ZLACPY( 'U', N, N, A, LDA, CWORK, N )
*[] CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
* Change: here index shifted by N to the left, CWORK(1:N)
* not needed for SIGMA only computation
DO 3052 p = 1, N
TEMP1 = SVA(IWORK(p))
*[] CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
CALL ZDSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
3052 CONTINUE
* .. the columns of R are scaled to have unit Euclidean lengths.
*[] CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
*[] $ CWORK(N+N*N+1), RWORK, IERR )
CALL ZPOCON( 'U', N, CWORK, N, ONE, TEMP1,
$ CWORK(N*N+1), RWORK, IERR )
*
END IF
IF ( TEMP1 .NE. ZERO ) THEN
SCONDA = ONE / SQRT(TEMP1)
ELSE
SCONDA = - ONE
END IF
* SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
ELSE
SCONDA = - ONE
END IF
END IF
*
L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
* If there is no violent scaling, artificial perturbation is not needed.
*
* Phase 3:
*
IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
*
* Singular Values only
*
* .. transpose A(1:NR,1:N)
DO 1946 p = 1, MIN( N-1, NR )
CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
CALL ZLACGV( N-p+1, A(p,p), 1 )
1946 CONTINUE
IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
*
* The following two DO-loops introduce small relative perturbation
* into the strict upper triangle of the lower triangular matrix.
* Small entries below the main diagonal are also changed.
* This modification is useful if the computing environment does not
* provide/allow FLUSH TO ZERO underflow, for it prevents many
* annoying denormalized numbers in case of strongly scaled matrices.
* The perturbation is structured so that it does not introduce any
* new perturbation of the singular values, and it does not destroy
* the job done by the preconditioner.
* The licence for this perturbation is in the variable L2PERT, which
* should be .FALSE. if FLUSH TO ZERO underflow is active.
*
IF ( .NOT. ALMORT ) THEN
*
IF ( L2PERT ) THEN
* XSC = SQRT(SMALL)
XSC = EPSLN / DBLE(N)
DO 4947 q = 1, NR
CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
DO 4949 p = 1, N
IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
$ .OR. ( p .LT. q ) )
* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
$ A(p,q) = CTEMP
4949 CONTINUE
4947 CONTINUE
ELSE
CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
END IF
*
* .. second preconditioning using the QR factorization
*
CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
*
* .. and transpose upper to lower triangular
DO 1948 p = 1, NR - 1
CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
CALL ZLACGV( NR-p+1, A(p,p), 1 )
1948 CONTINUE
*
END IF
*
* Row-cyclic Jacobi SVD algorithm with column pivoting
*
* .. again some perturbation (a "background noise") is added
* to drown denormals
IF ( L2PERT ) THEN
* XSC = SQRT(SMALL)
XSC = EPSLN / DBLE(N)
DO 1947 q = 1, NR
CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
DO 1949 p = 1, NR
IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
$ .OR. ( p .LT. q ) )
* $ A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
$ A(p,q) = CTEMP
1949 CONTINUE
1947 CONTINUE
ELSE
CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
END IF
*
* .. and one-sided Jacobi rotations are started on a lower
* triangular matrix (plus perturbation which is ignored in
* the part which destroys triangular form (confusing?!))
*
CALL ZGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
$ N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
*
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
*
*
ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) )
$ .OR.
$ ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
*
* -> Singular Values and Right Singular Vectors <-
*
IF ( ALMORT ) THEN
*
* .. in this case NR equals N
DO 1998 p = 1, NR
CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
CALL ZLACGV( N-p+1, V(p,p), 1 )
1998 CONTINUE
CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
*
CALL ZGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
$ CWORK, LWORK, RWORK, LRWORK, INFO )
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
ELSE
*
* .. two more QR factorizations ( one QRF is not enough, two require
* accumulated product of Jacobi rotations, three are perfect )
*
CALL ZLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
CALL ZLACPY( 'L', NR, NR, A, LDA, V, LDV )
CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
$ LWORK-2*N, IERR )
DO 8998 p = 1, NR
CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
CALL ZLACGV( NR-p+1, V(p,p), 1 )
8998 CONTINUE
CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
*
CALL ZGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
$ LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
IF ( NR .LT. N ) THEN
CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1), LDV )
CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1), LDV )
CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
END IF
*
CALL ZUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
$ V, LDV, CWORK(N+1), LWORK-N, IERR )
*
END IF
* .. permute the rows of V
* DO 8991 p = 1, N
* CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
* 8991 CONTINUE
* CALL ZLACPY( 'All', N, N, A, LDA, V, LDV )
CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
*
IF ( TRANSP ) THEN
CALL ZLACPY( 'A', N, N, V, LDV, U, LDU )
END IF
*
ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN
*
CALL ZLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
*
CALL ZGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
$ CWORK, LWORK, RWORK, LRWORK, INFO )
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
*
ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
*
* .. Singular Values and Left Singular Vectors ..
*
* .. second preconditioning step to avoid need to accumulate
* Jacobi rotations in the Jacobi iterations.
DO 1965 p = 1, NR
CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
CALL ZLACGV( N-p+1, U(p,p), 1 )
1965 CONTINUE
CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
*
CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
$ LWORK-2*N, IERR )
*
DO 1967 p = 1, NR - 1
CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
CALL ZLACGV( N-p+1, U(p,p), 1 )
1967 CONTINUE
CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
*
CALL ZGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
$ LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
*
IF ( NR .LT. M ) THEN
CALL ZLASET( 'A', M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
IF ( NR .LT. N1 ) THEN
CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
END IF
END IF
*
CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
$ LDU, CWORK(N+1), LWORK-N, IERR )
*
IF ( ROWPIV )
$ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
*
DO 1974 p = 1, N1
XSC = ONE / DZNRM2( M, U(1,p), 1 )
CALL ZDSCAL( M, XSC, U(1,p), 1 )
1974 CONTINUE
*
IF ( TRANSP ) THEN
CALL ZLACPY( 'A', N, N, U, LDU, V, LDV )
END IF
*
ELSE
*
* .. Full SVD ..
*
IF ( .NOT. JRACC ) THEN
*
IF ( .NOT. ALMORT ) THEN
*
* Second Preconditioning Step (QRF [with pivoting])
* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
* equivalent to an LQF CALL. Since in many libraries the QRF
* seems to be better optimized than the LQF, we do explicit
* transpose and use the QRF. This is subject to changes in an
* optimized implementation of ZGEJSV.
*
DO 1968 p = 1, NR
CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
CALL ZLACGV( N-p+1, V(p,p), 1 )
1968 CONTINUE
*
* .. the following two loops perturb small entries to avoid
* denormals in the second QR factorization, where they are
* as good as zeros. This is done to avoid painfully slow
* computation with denormals. The relative size of the perturbation
* is a parameter that can be changed by the implementer.
* This perturbation device will be obsolete on machines with
* properly implemented arithmetic.
* To switch it off, set L2PERT=.FALSE. To remove it from the
* code, remove the action under L2PERT=.TRUE., leave the ELSE part.
* The following two loops should be blocked and fused with the
* transposed copy above.
*
IF ( L2PERT ) THEN
XSC = SQRT(SMALL)
DO 2969 q = 1, NR
CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
DO 2968 p = 1, N
IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
$ .OR. ( p .LT. q ) )
* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
$ V(p,q) = CTEMP
IF ( p .LT. q ) V(p,q) = - V(p,q)
2968 CONTINUE
2969 CONTINUE
ELSE
CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
END IF
*
* Estimate the row scaled condition number of R1
* (If R1 is rectangular, N > NR, then the condition number
* of the leading NR x NR submatrix is estimated.)
*
CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
DO 3950 p = 1, NR
TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
3950 CONTINUE
CALL ZPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
$ CWORK(2*N+NR*NR+1),RWORK,IERR)
CONDR1 = ONE / SQRT(TEMP1)
* .. here need a second oppinion on the condition number
* .. then assume worst case scenario
* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
* more conservative <=> CONDR1 .LT. SQRT(DBLE(N))
*
COND_OK = SQRT(SQRT(DBLE(NR)))
*[TP] COND_OK is a tuning parameter.
*
IF ( CONDR1 .LT. COND_OK ) THEN
* .. the second QRF without pivoting. Note: in an optimized
* implementation, this QRF should be implemented as the QRF
* of a lower triangular matrix.
* R1^* = Q2 * R2
CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
$ LWORK-2*N, IERR )
*
IF ( L2PERT ) THEN
XSC = SQRT(SMALL)/EPSLN
DO 3959 p = 2, NR
DO 3958 q = 1, p - 1
CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
$ ZERO)
IF ( ABS(V(q,p)) .LE. TEMP1 )
* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
$ V(q,p) = CTEMP
3958 CONTINUE
3959 CONTINUE
END IF
*
IF ( NR .NE. N )
$ CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
* .. save ...
*
* .. this transposed copy should be better than naive
DO 1969 p = 1, NR - 1
CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
CALL ZLACGV(NR-p+1, V(p,p), 1 )
1969 CONTINUE
V(NR,NR)=CONJG(V(NR,NR))
*
CONDR2 = CONDR1
*
ELSE
*
* .. ill-conditioned case: second QRF with pivoting
* Note that windowed pivoting would be equaly good
* numerically, and more run-time efficient. So, in
* an optimal implementation, the next call to ZGEQP3
* should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)
* with properly (carefully) chosen parameters.
*
* R1^* * P2 = Q2 * R2
DO 3003 p = 1, NR
IWORK(N+p) = 0
3003 CONTINUE
CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
$ CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
** CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
** $ LWORK-2*N, IERR )
IF ( L2PERT ) THEN
XSC = SQRT(SMALL)
DO 3969 p = 2, NR
DO 3968 q = 1, p - 1
CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
$ ZERO)
IF ( ABS(V(q,p)) .LE. TEMP1 )
* $ V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
$ V(q,p) = CTEMP
3968 CONTINUE
3969 CONTINUE
END IF
*
CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
*
IF ( L2PERT ) THEN
XSC = SQRT(SMALL)
DO 8970 p = 2, NR
DO 8971 q = 1, p - 1
CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
$ ZERO)
* V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
V(p,q) = - CTEMP
8971 CONTINUE
8970 CONTINUE
ELSE
CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
END IF
* Now, compute R2 = L3 * Q3, the LQ factorization.
CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
$ CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
* .. and estimate the condition number
CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
DO 4950 p = 1, NR
TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
4950 CONTINUE
CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
$ CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
CONDR2 = ONE / SQRT(TEMP1)
*
*
IF ( CONDR2 .GE. COND_OK ) THEN
* .. save the Householder vectors used for Q3
* (this overwrittes the copy of R2, as it will not be
* needed in this branch, but it does not overwritte the
* Huseholder vectors of Q2.).
CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
* .. and the rest of the information on Q3 is in
* WORK(2*N+N*NR+1:2*N+N*NR+N)
END IF
*
END IF
*
IF ( L2PERT ) THEN
XSC = SQRT(SMALL)
DO 4968 q = 2, NR
CTEMP = XSC * V(q,q)
DO 4969 p = 1, q - 1
* V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
V(p,q) = - CTEMP
4969 CONTINUE
4968 CONTINUE
ELSE
CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
END IF
*
* Second preconditioning finished; continue with Jacobi SVD
* The input matrix is lower trinagular.
*
* Recover the right singular vectors as solution of a well
* conditioned triangular matrix equation.
*
IF ( CONDR1 .LT. COND_OK ) THEN
*
CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
$ CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
$ LRWORK, INFO )
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
DO 3970 p = 1, NR
CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
CALL ZDSCAL( NR, SVA(p), V(1,p), 1 )
3970 CONTINUE
* .. pick the right matrix equation and solve it
*
IF ( NR .EQ. N ) THEN
* :)) .. best case, R1 is inverted. The solution of this matrix
* equation is Q2*V2 = the product of the Jacobi rotations
* used in ZGESVJ, premultiplied with the orthogonal matrix
* from the second QR factorization.
CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
ELSE
* .. R1 is well conditioned, but non-square. Adjoint of R2
* is inverted to get the product of the Jacobi rotations
* used in ZGESVJ. The Q-factor from the second QR
* factorization is then built in explicitly.
CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
$ N,V,LDV)
IF ( NR .LT. N ) THEN
CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
END IF
CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
$ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
END IF
*
ELSE IF ( CONDR2 .LT. COND_OK ) THEN
*
* The matrix R2 is inverted. The solution of the matrix equation
* is Q3^* * V3 = the product of the Jacobi rotations (appplied to
* the lower triangular L3 from the LQ factorization of
* R2=L3*Q3), pre-multiplied with the transposed Q3.
CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
$ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
$ RWORK, LRWORK, INFO )
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
DO 3870 p = 1, NR
CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
CALL ZDSCAL( NR, SVA(p), U(1,p), 1 )
3870 CONTINUE
CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
$ U,LDU)
* .. apply the permutation from the second QR factorization
DO 873 q = 1, NR
DO 872 p = 1, NR
CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
872 CONTINUE
DO 874 p = 1, NR
U(p,q) = CWORK(2*N+N*NR+NR+p)
874 CONTINUE
873 CONTINUE
IF ( NR .LT. N ) THEN
CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
END IF
CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
$ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
ELSE
* Last line of defense.
* #:( This is a rather pathological case: no scaled condition
* improvement after two pivoted QR factorizations. Other
* possibility is that the rank revealing QR factorization
* or the condition estimator has failed, or the COND_OK
* is set very close to ONE (which is unnecessary). Normally,
* this branch should never be executed, but in rare cases of
* failure of the RRQR or condition estimator, the last line of
* defense ensures that ZGEJSV completes the task.
* Compute the full SVD of L3 using ZGESVJ with explicit
* accumulation of Jacobi rotations.
CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
$ LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
$ RWORK, LRWORK, INFO )
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
IF ( NR .LT. N ) THEN
CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
END IF
CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
$ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
*
CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
$ CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
$ LWORK-2*N-N*NR-NR, IERR )
DO 773 q = 1, NR
DO 772 p = 1, NR
CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
772 CONTINUE
DO 774 p = 1, NR
U(p,q) = CWORK(2*N+N*NR+NR+p)
774 CONTINUE
773 CONTINUE
*
END IF
*
* Permute the rows of V using the (column) permutation from the
* first QRF. Also, scale the columns to make them unit in
* Euclidean norm. This applies to all cases.
*
TEMP1 = SQRT(DBLE(N)) * EPSLN
DO 1972 q = 1, N
DO 972 p = 1, N
CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
972 CONTINUE
DO 973 p = 1, N
V(p,q) = CWORK(2*N+N*NR+NR+p)
973 CONTINUE
XSC = ONE / DZNRM2( N, V(1,q), 1 )
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
$ CALL ZDSCAL( N, XSC, V(1,q), 1 )
1972 CONTINUE
* At this moment, V contains the right singular vectors of A.
* Next, assemble the left singular vector matrix U (M x N).
IF ( NR .LT. M ) THEN
CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
IF ( NR .LT. N1 ) THEN
CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE,
$ U(NR+1,NR+1),LDU)
END IF
END IF
*
* The Q matrix from the first QRF is built into the left singular
* matrix U. This applies to all cases.
*
CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
$ LDU, CWORK(N+1), LWORK-N, IERR )
* The columns of U are normalized. The cost is O(M*N) flops.
TEMP1 = SQRT(DBLE(M)) * EPSLN
DO 1973 p = 1, NR
XSC = ONE / DZNRM2( M, U(1,p), 1 )
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
$ CALL ZDSCAL( M, XSC, U(1,p), 1 )
1973 CONTINUE
*
* If the initial QRF is computed with row pivoting, the left
* singular vectors must be adjusted.
*
IF ( ROWPIV )
$ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
*
ELSE
*
* .. the initial matrix A has almost orthogonal columns and
* the second QRF is not needed
*
CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
IF ( L2PERT ) THEN
XSC = SQRT(SMALL)
DO 5970 p = 2, N
CTEMP = XSC * CWORK( N + (p-1)*N + p )
DO 5971 q = 1, p - 1
* CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
* $ ABS(CWORK(N+(p-1)*N+q)) )
CWORK(N+(q-1)*N+p)=-CTEMP
5971 CONTINUE
5970 CONTINUE
ELSE
CALL ZLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
END IF
*
CALL ZGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
$ N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
$ INFO )
*
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
DO 6970 p = 1, N
CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
6970 CONTINUE
*
CALL ZTRSM( 'L', 'U', 'N', 'N', N, N,
$ CONE, A, LDA, CWORK(N+1), N )
DO 6972 p = 1, N
CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
6972 CONTINUE
TEMP1 = SQRT(DBLE(N))*EPSLN
DO 6971 p = 1, N
XSC = ONE / DZNRM2( N, V(1,p), 1 )
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
$ CALL ZDSCAL( N, XSC, V(1,p), 1 )
6971 CONTINUE
*
* Assemble the left singular vector matrix U (M x N).
*
IF ( N .LT. M ) THEN
CALL ZLASET( 'A', M-N, N, CZERO, CZERO, U(N+1,1), LDU )
IF ( N .LT. N1 ) THEN
CALL ZLASET('A',N, N1-N, CZERO, CZERO, U(1,N+1),LDU)
CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
END IF
END IF
CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
$ LDU, CWORK(N+1), LWORK-N, IERR )
TEMP1 = SQRT(DBLE(M))*EPSLN
DO 6973 p = 1, N1
XSC = ONE / DZNRM2( M, U(1,p), 1 )
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
$ CALL ZDSCAL( M, XSC, U(1,p), 1 )
6973 CONTINUE
*
IF ( ROWPIV )
$ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
*
END IF
*
* end of the >> almost orthogonal case << in the full SVD
*
ELSE
*
* This branch deploys a preconditioned Jacobi SVD with explicitly
* accumulated rotations. It is included as optional, mainly for
* experimental purposes. It does perfom well, and can also be used.
* In this implementation, this branch will be automatically activated
* if the condition number sigma_max(A) / sigma_min(A) is predicted
* to be greater than the overflow threshold. This is because the
* a posteriori computation of the singular vectors assumes robust
* implementation of BLAS and some LAPACK procedures, capable of working
* in presence of extreme values, e.g. when the singular values spread from
* the underflow to the overflow threshold.
*
DO 7968 p = 1, NR
CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
CALL ZLACGV( N-p+1, V(p,p), 1 )
7968 CONTINUE
*
IF ( L2PERT ) THEN
XSC = SQRT(SMALL/EPSLN)
DO 5969 q = 1, NR
CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
DO 5968 p = 1, N
IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
$ .OR. ( p .LT. q ) )
* $ V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
$ V(p,q) = CTEMP
IF ( p .LT. q ) V(p,q) = - V(p,q)
5968 CONTINUE
5969 CONTINUE
ELSE
CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
END IF
CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
$ LWORK-2*N, IERR )
CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
*
DO 7969 p = 1, NR
CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
CALL ZLACGV( NR-p+1, U(p,p), 1 )
7969 CONTINUE
IF ( L2PERT ) THEN
XSC = SQRT(SMALL/EPSLN)
DO 9970 q = 2, NR
DO 9971 p = 1, q - 1
CTEMP = DCMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
$ ZERO)
* U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
U(p,q) = - CTEMP
9971 CONTINUE
9970 CONTINUE
ELSE
CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
END IF
CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
$ N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
$ RWORK, LRWORK, INFO )
SCALEM = RWORK(1)
NUMRANK = NINT(RWORK(2))
IF ( NR .LT. N ) THEN
CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
END IF
CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
$ V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
*
* Permute the rows of V using the (column) permutation from the
* first QRF. Also, scale the columns to make them unit in
* Euclidean norm. This applies to all cases.
*
TEMP1 = SQRT(DBLE(N)) * EPSLN
DO 7972 q = 1, N
DO 8972 p = 1, N
CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
8972 CONTINUE
DO 8973 p = 1, N
V(p,q) = CWORK(2*N+N*NR+NR+p)
8973 CONTINUE
XSC = ONE / DZNRM2( N, V(1,q), 1 )
IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
$ CALL ZDSCAL( N, XSC, V(1,q), 1 )
7972 CONTINUE
*
* At this moment, V contains the right singular vectors of A.
* Next, assemble the left singular vector matrix U (M x N).
*
IF ( NR .LT. M ) THEN
CALL ZLASET( 'A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
IF ( NR .LT. N1 ) THEN
CALL ZLASET('A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU)
CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
END IF
END IF
*
CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
$ LDU, CWORK(N+1), LWORK-N, IERR )
*
IF ( ROWPIV )
$ CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
*
*
END IF
IF ( TRANSP ) THEN
* .. swap U and V because the procedure worked on A^*
DO 6974 p = 1, N
CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 )
6974 CONTINUE
END IF
*
END IF
* end of the full SVD
*
* Undo scaling, if necessary (and possible)
*
IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
USCAL1 = ONE
USCAL2 = ONE
END IF
*
IF ( NR .LT. N ) THEN
DO 3004 p = NR+1, N
SVA(p) = ZERO
3004 CONTINUE
END IF
*
RWORK(1) = USCAL2 * SCALEM
RWORK(2) = USCAL1
IF ( ERREST ) RWORK(3) = SCONDA
IF ( LSVEC .AND. RSVEC ) THEN
RWORK(4) = CONDR1
RWORK(5) = CONDR2
END IF
IF ( L2TRAN ) THEN
RWORK(6) = ENTRA
RWORK(7) = ENTRAT
END IF
*
IWORK(1) = NR
IWORK(2) = NUMRANK
IWORK(3) = WARNING
IF ( TRANSP ) THEN
IWORK(4) = 1
ELSE
IWORK(4) = -1
END IF
*
RETURN
* ..
* .. END OF ZGEJSV
* ..
END
*
|