summaryrefslogtreecommitdiff
path: root/SRC/strsna.f
blob: 47f18afd582f836da717884f14c240ef14539d15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
*> \brief \b STRSNA
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download STRSNA + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsna.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsna.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsna.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE STRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
*                          LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
*                          INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          HOWMNY, JOB
*       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
*       ..
*       .. Array Arguments ..
*       LOGICAL            SELECT( * )
*       INTEGER            IWORK( * )
*       REAL               S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
*      $                   VR( LDVR, * ), WORK( LDWORK, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> STRSNA estimates reciprocal condition numbers for specified
*> eigenvalues and/or right eigenvectors of a real upper
*> quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
*> orthogonal).
*>
*> T must be in Schur canonical form (as returned by SHSEQR), that is,
*> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
*> 2-by-2 diagonal block has its diagonal elements equal and its
*> off-diagonal elements of opposite sign.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOB
*> \verbatim
*>          JOB is CHARACTER*1
*>          Specifies whether condition numbers are required for
*>          eigenvalues (S) or eigenvectors (SEP):
*>          = 'E': for eigenvalues only (S);
*>          = 'V': for eigenvectors only (SEP);
*>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
*> \endverbatim
*>
*> \param[in] HOWMNY
*> \verbatim
*>          HOWMNY is CHARACTER*1
*>          = 'A': compute condition numbers for all eigenpairs;
*>          = 'S': compute condition numbers for selected eigenpairs
*>                 specified by the array SELECT.
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*>          SELECT is LOGICAL array, dimension (N)
*>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
*>          condition numbers are required. To select condition numbers
*>          for the eigenpair corresponding to a real eigenvalue w(j),
*>          SELECT(j) must be set to .TRUE.. To select condition numbers
*>          corresponding to a complex conjugate pair of eigenvalues w(j)
*>          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
*>          set to .TRUE..
*>          If HOWMNY = 'A', SELECT is not referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix T. N >= 0.
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*>          T is REAL array, dimension (LDT,N)
*>          The upper quasi-triangular matrix T, in Schur canonical form.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T. LDT >= max(1,N).
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>          VL is REAL array, dimension (LDVL,M)
*>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
*>          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
*>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
*>          must be stored in consecutive columns of VL, as returned by
*>          SHSEIN or STREVC.
*>          If JOB = 'V', VL is not referenced.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*>          LDVL is INTEGER
*>          The leading dimension of the array VL.
*>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
*> \endverbatim
*>
*> \param[in] VR
*> \verbatim
*>          VR is REAL array, dimension (LDVR,M)
*>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
*>          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
*>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
*>          must be stored in consecutive columns of VR, as returned by
*>          SHSEIN or STREVC.
*>          If JOB = 'V', VR is not referenced.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*>          LDVR is INTEGER
*>          The leading dimension of the array VR.
*>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension (MM)
*>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
*>          selected eigenvalues, stored in consecutive elements of the
*>          array. For a complex conjugate pair of eigenvalues two
*>          consecutive elements of S are set to the same value. Thus
*>          S(j), SEP(j), and the j-th columns of VL and VR all
*>          correspond to the same eigenpair (but not in general the
*>          j-th eigenpair, unless all eigenpairs are selected).
*>          If JOB = 'V', S is not referenced.
*> \endverbatim
*>
*> \param[out] SEP
*> \verbatim
*>          SEP is REAL array, dimension (MM)
*>          If JOB = 'V' or 'B', the estimated reciprocal condition
*>          numbers of the selected eigenvectors, stored in consecutive
*>          elements of the array. For a complex eigenvector two
*>          consecutive elements of SEP are set to the same value. If
*>          the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
*>          is set to 0; this can only occur when the true value would be
*>          very small anyway.
*>          If JOB = 'E', SEP is not referenced.
*> \endverbatim
*>
*> \param[in] MM
*> \verbatim
*>          MM is INTEGER
*>          The number of elements in the arrays S (if JOB = 'E' or 'B')
*>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*>          M is INTEGER
*>          The number of elements of the arrays S and/or SEP actually
*>          used to store the estimated condition numbers.
*>          If HOWMNY = 'A', M is set to N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (LDWORK,N+6)
*>          If JOB = 'E', WORK is not referenced.
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*>          LDWORK is INTEGER
*>          The leading dimension of the array WORK.
*>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (2*(N-1))
*>          If JOB = 'E', IWORK is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The reciprocal of the condition number of an eigenvalue lambda is
*>  defined as
*>
*>          S(lambda) = |v**T*u| / (norm(u)*norm(v))
*>
*>  where u and v are the right and left eigenvectors of T corresponding
*>  to lambda; v**T denotes the transpose of v, and norm(u)
*>  denotes the Euclidean norm. These reciprocal condition numbers always
*>  lie between zero (very badly conditioned) and one (very well
*>  conditioned). If n = 1, S(lambda) is defined to be 1.
*>
*>  An approximate error bound for a computed eigenvalue W(i) is given by
*>
*>                      EPS * norm(T) / S(i)
*>
*>  where EPS is the machine precision.
*>
*>  The reciprocal of the condition number of the right eigenvector u
*>  corresponding to lambda is defined as follows. Suppose
*>
*>              T = ( lambda  c  )
*>                  (   0    T22 )
*>
*>  Then the reciprocal condition number is
*>
*>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
*>
*>  where sigma-min denotes the smallest singular value. We approximate
*>  the smallest singular value by the reciprocal of an estimate of the
*>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
*>  defined to be abs(T(1,1)).
*>
*>  An approximate error bound for a computed right eigenvector VR(i)
*>  is given by
*>
*>                      EPS * norm(T) / SEP(i)
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE STRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
     $                   LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
     $                   INFO )
*
*  -- LAPACK computational routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, JOB
      INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      INTEGER            IWORK( * )
      REAL               S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
     $                   VR( LDVR, * ), WORK( LDWORK, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            PAIR, SOMCON, WANTBH, WANTS, WANTSP
      INTEGER            I, IERR, IFST, ILST, J, K, KASE, KS, N2, NN
      REAL               BIGNUM, COND, CS, DELTA, DUMM, EPS, EST, LNRM,
     $                   MU, PROD, PROD1, PROD2, RNRM, SCALE, SMLNUM, SN
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
      REAL               DUMMY( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT, SLAMCH, SLAPY2, SNRM2
      EXTERNAL           LSAME, SDOT, SLAMCH, SLAPY2, SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLABAD, SLACN2, SLACPY, SLAQTR, STREXC, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTBH = LSAME( JOB, 'B' )
      WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
      WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
*
      SOMCON = LSAME( HOWMNY, 'S' )
*
      INFO = 0
      IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
         INFO = -10
      ELSE
*
*        Set M to the number of eigenpairs for which condition numbers
*        are required, and test MM.
*
         IF( SOMCON ) THEN
            M = 0
            PAIR = .FALSE.
            DO 10 K = 1, N
               IF( PAIR ) THEN
                  PAIR = .FALSE.
               ELSE
                  IF( K.LT.N ) THEN
                     IF( T( K+1, K ).EQ.ZERO ) THEN
                        IF( SELECT( K ) )
     $                     M = M + 1
                     ELSE
                        PAIR = .TRUE.
                        IF( SELECT( K ) .OR. SELECT( K+1 ) )
     $                     M = M + 2
                     END IF
                  ELSE
                     IF( SELECT( N ) )
     $                  M = M + 1
                  END IF
               END IF
   10       CONTINUE
         ELSE
            M = N
         END IF
*
         IF( MM.LT.M ) THEN
            INFO = -13
         ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
            INFO = -16
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STRSNA', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( SOMCON ) THEN
            IF( .NOT.SELECT( 1 ) )
     $         RETURN
         END IF
         IF( WANTS )
     $      S( 1 ) = ONE
         IF( WANTSP )
     $      SEP( 1 ) = ABS( T( 1, 1 ) )
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
*
      KS = 0
      PAIR = .FALSE.
      DO 60 K = 1, N
*
*        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block.
*
         IF( PAIR ) THEN
            PAIR = .FALSE.
            GO TO 60
         ELSE
            IF( K.LT.N )
     $         PAIR = T( K+1, K ).NE.ZERO
         END IF
*
*        Determine whether condition numbers are required for the k-th
*        eigenpair.
*
         IF( SOMCON ) THEN
            IF( PAIR ) THEN
               IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
     $            GO TO 60
            ELSE
               IF( .NOT.SELECT( K ) )
     $            GO TO 60
            END IF
         END IF
*
         KS = KS + 1
*
         IF( WANTS ) THEN
*
*           Compute the reciprocal condition number of the k-th
*           eigenvalue.
*
            IF( .NOT.PAIR ) THEN
*
*              Real eigenvalue.
*
               PROD = SDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
               RNRM = SNRM2( N, VR( 1, KS ), 1 )
               LNRM = SNRM2( N, VL( 1, KS ), 1 )
               S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
            ELSE
*
*              Complex eigenvalue.
*
               PROD1 = SDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
               PROD1 = PROD1 + SDOT( N, VR( 1, KS+1 ), 1, VL( 1, KS+1 ),
     $                 1 )
               PROD2 = SDOT( N, VL( 1, KS ), 1, VR( 1, KS+1 ), 1 )
               PROD2 = PROD2 - SDOT( N, VL( 1, KS+1 ), 1, VR( 1, KS ),
     $                 1 )
               RNRM = SLAPY2( SNRM2( N, VR( 1, KS ), 1 ),
     $                SNRM2( N, VR( 1, KS+1 ), 1 ) )
               LNRM = SLAPY2( SNRM2( N, VL( 1, KS ), 1 ),
     $                SNRM2( N, VL( 1, KS+1 ), 1 ) )
               COND = SLAPY2( PROD1, PROD2 ) / ( RNRM*LNRM )
               S( KS ) = COND
               S( KS+1 ) = COND
            END IF
         END IF
*
         IF( WANTSP ) THEN
*
*           Estimate the reciprocal condition number of the k-th
*           eigenvector.
*
*           Copy the matrix T to the array WORK and swap the diagonal
*           block beginning at T(k,k) to the (1,1) position.
*
            CALL SLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
            IFST = K
            ILST = 1
            CALL STREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, IFST, ILST,
     $                   WORK( 1, N+1 ), IERR )
*
            IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
*
*              Could not swap because blocks not well separated
*
               SCALE = ONE
               EST = BIGNUM
            ELSE
*
*              Reordering successful
*
               IF( WORK( 2, 1 ).EQ.ZERO ) THEN
*
*                 Form C = T22 - lambda*I in WORK(2:N,2:N).
*
                  DO 20 I = 2, N
                     WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
   20             CONTINUE
                  N2 = 1
                  NN = N - 1
               ELSE
*
*                 Triangularize the 2 by 2 block by unitary
*                 transformation U = [  cs   i*ss ]
*                                    [ i*ss   cs  ].
*                 such that the (1,1) position of WORK is complex
*                 eigenvalue lambda with positive imaginary part. (2,2)
*                 position of WORK is the complex eigenvalue lambda
*                 with negative imaginary  part.
*
                  MU = SQRT( ABS( WORK( 1, 2 ) ) )*
     $                 SQRT( ABS( WORK( 2, 1 ) ) )
                  DELTA = SLAPY2( MU, WORK( 2, 1 ) )
                  CS = MU / DELTA
                  SN = -WORK( 2, 1 ) / DELTA
*
*                 Form
*
*                 C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ]
*                                          [   mu                     ]
*                                          [         ..               ]
*                                          [             ..           ]
*                                          [                  mu      ]
*                 where C**T is transpose of matrix C,
*                 and RWORK is stored starting in the N+1-st column of
*                 WORK.
*
                  DO 30 J = 3, N
                     WORK( 2, J ) = CS*WORK( 2, J )
                     WORK( J, J ) = WORK( J, J ) - WORK( 1, 1 )
   30             CONTINUE
                  WORK( 2, 2 ) = ZERO
*
                  WORK( 1, N+1 ) = TWO*MU
                  DO 40 I = 2, N - 1
                     WORK( I, N+1 ) = SN*WORK( 1, I+1 )
   40             CONTINUE
                  N2 = 2
                  NN = 2*( N-1 )
               END IF
*
*              Estimate norm(inv(C**T))
*
               EST = ZERO
               KASE = 0
   50          CONTINUE
               CALL SLACN2( NN, WORK( 1, N+2 ), WORK( 1, N+4 ), IWORK,
     $                      EST, KASE, ISAVE )
               IF( KASE.NE.0 ) THEN
                  IF( KASE.EQ.1 ) THEN
                     IF( N2.EQ.1 ) THEN
*
*                       Real eigenvalue: solve C**T*x = scale*c.
*
                        CALL SLAQTR( .TRUE., .TRUE., N-1, WORK( 2, 2 ),
     $                               LDWORK, DUMMY, DUMM, SCALE,
     $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
     $                               IERR )
                     ELSE
*
*                       Complex eigenvalue: solve
*                       C**T*(p+iq) = scale*(c+id) in real arithmetic.
*
                        CALL SLAQTR( .TRUE., .FALSE., N-1, WORK( 2, 2 ),
     $                               LDWORK, WORK( 1, N+1 ), MU, SCALE,
     $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
     $                               IERR )
                     END IF
                  ELSE
                     IF( N2.EQ.1 ) THEN
*
*                       Real eigenvalue: solve C*x = scale*c.
*
                        CALL SLAQTR( .FALSE., .TRUE., N-1, WORK( 2, 2 ),
     $                               LDWORK, DUMMY, DUMM, SCALE,
     $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
     $                               IERR )
                     ELSE
*
*                       Complex eigenvalue: solve
*                       C*(p+iq) = scale*(c+id) in real arithmetic.
*
                        CALL SLAQTR( .FALSE., .FALSE., N-1,
     $                               WORK( 2, 2 ), LDWORK,
     $                               WORK( 1, N+1 ), MU, SCALE,
     $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
     $                               IERR )
*
                     END IF
                  END IF
*
                  GO TO 50
               END IF
            END IF
*
            SEP( KS ) = SCALE / MAX( EST, SMLNUM )
            IF( PAIR )
     $         SEP( KS+1 ) = SEP( KS )
         END IF
*
         IF( PAIR )
     $      KS = KS + 1
*
   60 CONTINUE
      RETURN
*
*     End of STRSNA
*
      END