1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
*> \brief \b STRRFS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download STRRFS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strrfs.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strrfs.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strrfs.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE STRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
* LDX, FERR, BERR, WORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER INFO, LDA, LDB, LDX, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* REAL A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
* $ WORK( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> STRRFS provides error bounds and backward error estimates for the
*> solution to a system of linear equations with a triangular
*> coefficient matrix.
*>
*> The solution matrix X must be computed by STRTRS or some other
*> means before entering this routine. STRRFS does not do iterative
*> refinement because doing so cannot improve the backward error.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> = 'N': A is non-unit triangular;
*> = 'U': A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The triangular matrix A. If UPLO = 'U', the leading N-by-N
*> upper triangular part of the array A contains the upper
*> triangular matrix, and the strictly lower triangular part of
*> A is not referenced. If UPLO = 'L', the leading N-by-N lower
*> triangular part of the array A contains the lower triangular
*> matrix, and the strictly upper triangular part of A is not
*> referenced. If DIAG = 'U', the diagonal elements of A are
*> also not referenced and are assumed to be 1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL array, dimension (LDB,NRHS)
*> The right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is REAL array, dimension (LDX,NRHS)
*> The solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*> FERR is REAL array, dimension (NRHS)
*> The estimated forward error bound for each solution vector
*> X(j) (the j-th column of the solution matrix X).
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
*> is an estimated upper bound for the magnitude of the largest
*> element in (X(j) - XTRUE) divided by the magnitude of the
*> largest element in X(j). The estimate is as reliable as
*> the estimate for RCOND, and is almost always a slight
*> overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is REAL array, dimension (NRHS)
*> The componentwise relative backward error of each solution
*> vector X(j) (i.e., the smallest relative change in
*> any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE STRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
$ LDX, FERR, BERR, WORK, IWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDA, LDB, LDX, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
$ WORK( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
CHARACTER TRANST
INTEGER I, J, K, KASE, NZ
REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SLACN2, STRMV, STRSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH
EXTERNAL LSAME, SLAMCH
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( NRHS.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'STRRFS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
DO 10 J = 1, NRHS
FERR( J ) = ZERO
BERR( J ) = ZERO
10 CONTINUE
RETURN
END IF
*
IF( NOTRAN ) THEN
TRANST = 'T'
ELSE
TRANST = 'N'
END IF
*
* NZ = maximum number of nonzero elements in each row of A, plus 1
*
NZ = N + 1
EPS = SLAMCH( 'Epsilon' )
SAFMIN = SLAMCH( 'Safe minimum' )
SAFE1 = NZ*SAFMIN
SAFE2 = SAFE1 / EPS
*
* Do for each right hand side
*
DO 250 J = 1, NRHS
*
* Compute residual R = B - op(A) * X,
* where op(A) = A or A**T, depending on TRANS.
*
CALL SCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
CALL STRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ), 1 )
CALL SAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
*
* Compute componentwise relative backward error from formula
*
* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
*
* where abs(Z) is the componentwise absolute value of the matrix
* or vector Z. If the i-th component of the denominator is less
* than SAFE2, then SAFE1 is added to the i-th components of the
* numerator and denominator before dividing.
*
DO 20 I = 1, N
WORK( I ) = ABS( B( I, J ) )
20 CONTINUE
*
IF( NOTRAN ) THEN
*
* Compute abs(A)*abs(X) + abs(B).
*
IF( UPPER ) THEN
IF( NOUNIT ) THEN
DO 40 K = 1, N
XK = ABS( X( K, J ) )
DO 30 I = 1, K
WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
30 CONTINUE
40 CONTINUE
ELSE
DO 60 K = 1, N
XK = ABS( X( K, J ) )
DO 50 I = 1, K - 1
WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
50 CONTINUE
WORK( K ) = WORK( K ) + XK
60 CONTINUE
END IF
ELSE
IF( NOUNIT ) THEN
DO 80 K = 1, N
XK = ABS( X( K, J ) )
DO 70 I = K, N
WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
70 CONTINUE
80 CONTINUE
ELSE
DO 100 K = 1, N
XK = ABS( X( K, J ) )
DO 90 I = K + 1, N
WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
90 CONTINUE
WORK( K ) = WORK( K ) + XK
100 CONTINUE
END IF
END IF
ELSE
*
* Compute abs(A**T)*abs(X) + abs(B).
*
IF( UPPER ) THEN
IF( NOUNIT ) THEN
DO 120 K = 1, N
S = ZERO
DO 110 I = 1, K
S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
110 CONTINUE
WORK( K ) = WORK( K ) + S
120 CONTINUE
ELSE
DO 140 K = 1, N
S = ABS( X( K, J ) )
DO 130 I = 1, K - 1
S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
130 CONTINUE
WORK( K ) = WORK( K ) + S
140 CONTINUE
END IF
ELSE
IF( NOUNIT ) THEN
DO 160 K = 1, N
S = ZERO
DO 150 I = K, N
S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
150 CONTINUE
WORK( K ) = WORK( K ) + S
160 CONTINUE
ELSE
DO 180 K = 1, N
S = ABS( X( K, J ) )
DO 170 I = K + 1, N
S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
170 CONTINUE
WORK( K ) = WORK( K ) + S
180 CONTINUE
END IF
END IF
END IF
S = ZERO
DO 190 I = 1, N
IF( WORK( I ).GT.SAFE2 ) THEN
S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
ELSE
S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
$ ( WORK( I )+SAFE1 ) )
END IF
190 CONTINUE
BERR( J ) = S
*
* Bound error from formula
*
* norm(X - XTRUE) / norm(X) .le. FERR =
* norm( abs(inv(op(A)))*
* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
*
* where
* norm(Z) is the magnitude of the largest component of Z
* inv(op(A)) is the inverse of op(A)
* abs(Z) is the componentwise absolute value of the matrix or
* vector Z
* NZ is the maximum number of nonzeros in any row of A, plus 1
* EPS is machine epsilon
*
* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
* is incremented by SAFE1 if the i-th component of
* abs(op(A))*abs(X) + abs(B) is less than SAFE2.
*
* Use SLACN2 to estimate the infinity-norm of the matrix
* inv(op(A)) * diag(W),
* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
*
DO 200 I = 1, N
IF( WORK( I ).GT.SAFE2 ) THEN
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
ELSE
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
END IF
200 CONTINUE
*
KASE = 0
210 CONTINUE
CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
$ KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
* Multiply by diag(W)*inv(op(A)**T).
*
CALL STRSV( UPLO, TRANST, DIAG, N, A, LDA, WORK( N+1 ),
$ 1 )
DO 220 I = 1, N
WORK( N+I ) = WORK( I )*WORK( N+I )
220 CONTINUE
ELSE
*
* Multiply by inv(op(A))*diag(W).
*
DO 230 I = 1, N
WORK( N+I ) = WORK( I )*WORK( N+I )
230 CONTINUE
CALL STRSV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ),
$ 1 )
END IF
GO TO 210
END IF
*
* Normalize error.
*
LSTRES = ZERO
DO 240 I = 1, N
LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
240 CONTINUE
IF( LSTRES.NE.ZERO )
$ FERR( J ) = FERR( J ) / LSTRES
*
250 CONTINUE
*
RETURN
*
* End of STRRFS
*
END
|