summaryrefslogtreecommitdiff
path: root/SRC/ssytri.f
blob: 118fc6b24fd9b84c9eec2094817519f248a7f798 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
      SUBROUTINE SSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYTRI computes the inverse of a real symmetric indefinite matrix
*  A using the factorization A = U*D*U**T or A = L*D*L**T computed by
*  SSYTRF.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the details of the factorization are stored
*          as an upper or lower triangular matrix.
*          = 'U':  Upper triangular, form is A = U*D*U**T;
*          = 'L':  Lower triangular, form is A = L*D*L**T.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the block diagonal matrix D and the multipliers
*          used to obtain the factor U or L as computed by SSYTRF.
*
*          On exit, if INFO = 0, the (symmetric) inverse of the original
*          matrix.  If UPLO = 'U', the upper triangular part of the
*          inverse is formed and the part of A below the diagonal is not
*          referenced; if UPLO = 'L' the lower triangular part of the
*          inverse is formed and the part of A above the diagonal is
*          not referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (input) INTEGER array, dimension (N)
*          Details of the interchanges and the block structure of D
*          as determined by SSYTRF.
*
*  WORK    (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
*               inverse could not be computed.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            K, KP, KSTEP
      REAL               AK, AKKP1, AKP1, D, T, TEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT
      EXTERNAL           LSAME, SDOT
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SSWAP, SSYMV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYTRI', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Check that the diagonal matrix D is nonsingular.
*
      IF( UPPER ) THEN
*
*        Upper triangular storage: examine D from bottom to top
*
         DO 10 INFO = N, 1, -1
            IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
     $         RETURN
   10    CONTINUE
      ELSE
*
*        Lower triangular storage: examine D from top to bottom.
*
         DO 20 INFO = 1, N
            IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
     $         RETURN
   20    CONTINUE
      END IF
      INFO = 0
*
      IF( UPPER ) THEN
*
*        Compute inv(A) from the factorization A = U*D*U**T.
*
*        K is the main loop index, increasing from 1 to N in steps of
*        1 or 2, depending on the size of the diagonal blocks.
*
         K = 1
   30    CONTINUE
*
*        If K > N, exit from loop.
*
         IF( K.GT.N )
     $      GO TO 40
*
         IF( IPIV( K ).GT.0 ) THEN
*
*           1 x 1 diagonal block
*
*           Invert the diagonal block.
*
            A( K, K ) = ONE / A( K, K )
*
*           Compute column K of the inverse.
*
            IF( K.GT.1 ) THEN
               CALL SCOPY( K-1, A( 1, K ), 1, WORK, 1 )
               CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
     $                     A( 1, K ), 1 )
               A( K, K ) = A( K, K ) - SDOT( K-1, WORK, 1, A( 1, K ),
     $                     1 )
            END IF
            KSTEP = 1
         ELSE
*
*           2 x 2 diagonal block
*
*           Invert the diagonal block.
*
            T = ABS( A( K, K+1 ) )
            AK = A( K, K ) / T
            AKP1 = A( K+1, K+1 ) / T
            AKKP1 = A( K, K+1 ) / T
            D = T*( AK*AKP1-ONE )
            A( K, K ) = AKP1 / D
            A( K+1, K+1 ) = AK / D
            A( K, K+1 ) = -AKKP1 / D
*
*           Compute columns K and K+1 of the inverse.
*
            IF( K.GT.1 ) THEN
               CALL SCOPY( K-1, A( 1, K ), 1, WORK, 1 )
               CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
     $                     A( 1, K ), 1 )
               A( K, K ) = A( K, K ) - SDOT( K-1, WORK, 1, A( 1, K ),
     $                     1 )
               A( K, K+1 ) = A( K, K+1 ) -
     $                       SDOT( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
               CALL SCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
               CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
     $                     A( 1, K+1 ), 1 )
               A( K+1, K+1 ) = A( K+1, K+1 ) -
     $                         SDOT( K-1, WORK, 1, A( 1, K+1 ), 1 )
            END IF
            KSTEP = 2
         END IF
*
         KP = ABS( IPIV( K ) )
         IF( KP.NE.K ) THEN
*
*           Interchange rows and columns K and KP in the leading
*           submatrix A(1:k+1,1:k+1)
*
            CALL SSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
            CALL SSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
            TEMP = A( K, K )
            A( K, K ) = A( KP, KP )
            A( KP, KP ) = TEMP
            IF( KSTEP.EQ.2 ) THEN
               TEMP = A( K, K+1 )
               A( K, K+1 ) = A( KP, K+1 )
               A( KP, K+1 ) = TEMP
            END IF
         END IF
*
         K = K + KSTEP
         GO TO 30
   40    CONTINUE
*
      ELSE
*
*        Compute inv(A) from the factorization A = L*D*L**T.
*
*        K is the main loop index, increasing from 1 to N in steps of
*        1 or 2, depending on the size of the diagonal blocks.
*
         K = N
   50    CONTINUE
*
*        If K < 1, exit from loop.
*
         IF( K.LT.1 )
     $      GO TO 60
*
         IF( IPIV( K ).GT.0 ) THEN
*
*           1 x 1 diagonal block
*
*           Invert the diagonal block.
*
            A( K, K ) = ONE / A( K, K )
*
*           Compute column K of the inverse.
*
            IF( K.LT.N ) THEN
               CALL SCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
               CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
     $                     ZERO, A( K+1, K ), 1 )
               A( K, K ) = A( K, K ) - SDOT( N-K, WORK, 1, A( K+1, K ),
     $                     1 )
            END IF
            KSTEP = 1
         ELSE
*
*           2 x 2 diagonal block
*
*           Invert the diagonal block.
*
            T = ABS( A( K, K-1 ) )
            AK = A( K-1, K-1 ) / T
            AKP1 = A( K, K ) / T
            AKKP1 = A( K, K-1 ) / T
            D = T*( AK*AKP1-ONE )
            A( K-1, K-1 ) = AKP1 / D
            A( K, K ) = AK / D
            A( K, K-1 ) = -AKKP1 / D
*
*           Compute columns K-1 and K of the inverse.
*
            IF( K.LT.N ) THEN
               CALL SCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
               CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
     $                     ZERO, A( K+1, K ), 1 )
               A( K, K ) = A( K, K ) - SDOT( N-K, WORK, 1, A( K+1, K ),
     $                     1 )
               A( K, K-1 ) = A( K, K-1 ) -
     $                       SDOT( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
     $                       1 )
               CALL SCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
               CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
     $                     ZERO, A( K+1, K-1 ), 1 )
               A( K-1, K-1 ) = A( K-1, K-1 ) -
     $                         SDOT( N-K, WORK, 1, A( K+1, K-1 ), 1 )
            END IF
            KSTEP = 2
         END IF
*
         KP = ABS( IPIV( K ) )
         IF( KP.NE.K ) THEN
*
*           Interchange rows and columns K and KP in the trailing
*           submatrix A(k-1:n,k-1:n)
*
            IF( KP.LT.N )
     $         CALL SSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
            CALL SSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
            TEMP = A( K, K )
            A( K, K ) = A( KP, KP )
            A( KP, KP ) = TEMP
            IF( KSTEP.EQ.2 ) THEN
               TEMP = A( K, K-1 )
               A( K, K-1 ) = A( KP, K-1 )
               A( KP, K-1 ) = TEMP
            END IF
         END IF
*
         K = K - KSTEP
         GO TO 50
   60    CONTINUE
      END IF
*
      RETURN
*
*     End of SSYTRI
*
      END