1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
*> \brief \b SSYCONVF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SSYCONVF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyconvf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyconvf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyconvf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SSYCONVF( UPLO, WAY, N, A, LDA, IPIV, E, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO, WAY
* INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* REAL A( LDA, * ), E( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*> If parameter WAY = 'C':
*> SSYCONVF converts the factorization output format used in
*> SSYTRF provided on entry in parameter A into the factorization
*> output format used in SSYTRF_RK (or SSYTRF_BK) that is stored
*> on exit in parameters A and E. It also coverts in place details of
*> the intechanges stored in IPIV from the format used in SSYTRF into
*> the format used in SSYTRF_RK (or SSYTRF_BK).
*>
*> If parameter WAY = 'R':
*> SSYCONVF performs the conversion in reverse direction, i.e.
*> converts the factorization output format used in SSYTRF_RK
*> (or SSYTRF_BK) provided on entry in parametes A and E into
*> the factorization output format used in SSYTRF that is stored
*> on exit in parameter A. It also coverts in place details of
*> the intechanges stored in IPIV from the format used in SSYTRF_RK
*> (or SSYTRF_BK) into the format used in SSYTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are
*> stored as an upper or lower triangular matrix A.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] WAY
*> \verbatim
*> WAY is CHARACTER*1
*> = 'C': Convert
*> = 'R': Revert
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*>
*> 1) If WAY ='C':
*>
*> On entry, contains factorization details in format used in
*> SSYTRF:
*> a) all elements of the symmetric block diagonal
*> matrix D on the diagonal of A and on superdiagonal
*> (or subdiagonal) of A, and
*> b) If UPLO = 'U': multipliers used to obtain factor U
*> in the superdiagonal part of A.
*> If UPLO = 'L': multipliers used to obtain factor L
*> in the superdiagonal part of A.
*>
*> On exit, contains factorization details in format used in
*> SSYTRF_RK or SSYTRF_BK:
*> a) ONLY diagonal elements of the symmetric block diagonal
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*> (superdiagonal (or subdiagonal) elements of D
*> are stored on exit in array E), and
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
*> If UPLO = 'L': factor L in the subdiagonal part of A.
*>
*> 2) If WAY = 'R':
*>
*> On entry, contains factorization details in format used in
*> SSYTRF_RK or SSYTRF_BK:
*> a) ONLY diagonal elements of the symmetric block diagonal
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*> (superdiagonal (or subdiagonal) elements of D
*> are stored on exit in array E), and
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
*> If UPLO = 'L': factor L in the subdiagonal part of A.
*>
*> On exit, contains factorization details in format used in
*> SSYTRF:
*> a) all elements of the symmetric block diagonal
*> matrix D on the diagonal of A and on superdiagonal
*> (or subdiagonal) of A, and
*> b) If UPLO = 'U': multipliers used to obtain factor U
*> in the superdiagonal part of A.
*> If UPLO = 'L': multipliers used to obtain factor L
*> in the superdiagonal part of A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is REAL array, dimension (N)
*>
*> 1) If WAY ='C':
*>
*> On entry, just a workspace.
*>
*> On exit, contains the superdiagonal (or subdiagonal)
*> elements of the symmetric block diagonal matrix D
*> with 1-by-1 or 2-by-2 diagonal blocks, where
*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
*>
*> 2) If WAY = 'R':
*>
*> On entry, contains the superdiagonal (or subdiagonal)
*> elements of the symmetric block diagonal matrix D
*> with 1-by-1 or 2-by-2 diagonal blocks, where
*> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
*> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
*>
*> On exit, is not changed
*> \endverbatim
*.
*> \param[in,out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*>
*> 1) If WAY ='C':
*> On entry, details of the interchanges and the block
*> structure of D in the format used in SSYTRF.
*> On exit, details of the interchanges and the block
*> structure of D in the format used in SSYTRF_RK
*> ( or SSYTRF_BK).
*>
*> 1) If WAY ='R':
*> On entry, details of the interchanges and the block
*> structure of D in the format used in SSYTRF_RK
*> ( or SSYTRF_BK).
*> On exit, details of the interchanges and the block
*> structure of D in the format used in SSYTRF.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2016
*
*> \ingroup singleSYcomputational
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2016, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*>
*> \endverbatim
* =====================================================================
SUBROUTINE SSYCONVF( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2016
*
* .. Scalar Arguments ..
CHARACTER UPLO, WAY
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL A( LDA, * ), E( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
*
* .. External Subroutines ..
EXTERNAL SSWAP, XERBLA
* .. Local Scalars ..
LOGICAL UPPER, CONVERT
INTEGER I, IP
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
CONVERT = LSAME( WAY, 'C' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSYCONVF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Begin A is UPPER
*
IF ( CONVERT ) THEN
*
* Convert A (A is upper)
*
*
* Convert VALUE
*
* Assign superdiagonal entries of D to array E and zero out
* corresponding entries in input storage A
*
I = N
E( 1 ) = ZERO
DO WHILE ( I.GT.1 )
IF( IPIV( I ).LT.0 ) THEN
E( I ) = A( I-1, I )
E( I-1 ) = ZERO
A( I-1, I ) = ZERO
I = I - 1
ELSE
E( I ) = ZERO
END IF
I = I - 1
END DO
*
* Convert PERMUTATIONS and IPIV
*
* Apply permutaions to submatrices of upper part of A
* in factorization order where i decreases from N to 1
*
I = N
DO WHILE ( I.GE.1 )
IF( IPIV( I ).GT.0 ) THEN
*
* 1-by-1 pivot interchange
*
* Swap rows i and IPIV(i) in A(1:i,N-i:N)
*
IP = IPIV( I )
IF( I.LT.N ) THEN
IF( IP.NE.I ) THEN
CALL SSWAP( N-I, A( I, I+1 ), LDA,
$ A( IP, I+1 ), LDA )
END IF
END IF
*
ELSE
*
* 2-by-2 pivot interchange
*
* Swap rows i-1 and IPIV(i) in A(1:i,N-i:N)
*
IP = -IPIV( I )
IF( I.LT.N ) THEN
IF( IP.NE.(I-1) ) THEN
CALL SSWAP( N-I, A( I-1, I+1 ), LDA,
$ A( IP, I+1 ), LDA )
END IF
END IF
*
* Convert IPIV
* There is no interchnge of rows i and and IPIV(i),
* so this should be reflected in IPIV format for
* *SYTRF_RK ( or *SYTRF_BK)
*
IPIV( I ) = I
*
I = I - 1
*
END IF
I = I - 1
END DO
*
ELSE
*
* Revert A (A is upper)
*
*
* Revert PERMUTATIONS and IPIV
*
* Apply permutaions to submatrices of upper part of A
* in reverse factorization order where i increases from 1 to N
*
I = 1
DO WHILE ( I.LE.N )
IF( IPIV( I ).GT.0 ) THEN
*
* 1-by-1 pivot interchange
*
* Swap rows i and IPIV(i) in A(1:i,N-i:N)
*
IP = IPIV( I )
IF( I.LT.N ) THEN
IF( IP.NE.I ) THEN
CALL SSWAP( N-I, A( IP, I+1 ), LDA,
$ A( I, I+1 ), LDA )
END IF
END IF
*
ELSE
*
* 2-by-2 pivot interchange
*
* Swap rows i-1 and IPIV(i) in A(1:i,N-i:N)
*
I = I + 1
IP = -IPIV( I )
IF( I.LT.N ) THEN
IF( IP.NE.(I-1) ) THEN
CALL SSWAP( N-I, A( IP, I+1 ), LDA,
$ A( I-1, I+1 ), LDA )
END IF
END IF
*
* Convert IPIV
* There is one interchange of rows i-1 and IPIV(i-1),
* so this should be recorded in two consecutive entries
* in IPIV format for *SYTRF
*
IPIV( I ) = IPIV( I-1 )
*
END IF
I = I + 1
END DO
*
* Revert VALUE
* Assign superdiagonal entries of D from array E to
* superdiagonal entries of A.
*
I = N
DO WHILE ( I.GT.1 )
IF( IPIV( I ).LT.0 ) THEN
A( I-1, I ) = E( I )
I = I - 1
END IF
I = I - 1
END DO
*
* End A is UPPER
*
END IF
*
ELSE
*
* Begin A is LOWER
*
IF ( CONVERT ) THEN
*
* Convert A (A is lower)
*
*
* Convert VALUE
* Assign subdiagonal entries of D to array E and zero out
* corresponding entries in input storage A
*
I = 1
E( N ) = ZERO
DO WHILE ( I.LE.N )
IF( I.LT.N .AND. IPIV(I).LT.0 ) THEN
E( I ) = A( I+1, I )
E( I+1 ) = ZERO
A( I+1, I ) = ZERO
I = I + 1
ELSE
E( I ) = ZERO
END IF
I = I + 1
END DO
*
* Convert PERMUTATIONS and IPIV
*
* Apply permutaions to submatrices of lower part of A
* in factorization order where k increases from 1 to N
*
I = 1
DO WHILE ( I.LE.N )
IF( IPIV( I ).GT.0 ) THEN
*
* 1-by-1 pivot interchange
*
* Swap rows i and IPIV(i) in A(i:N,1:i-1)
*
IP = IPIV( I )
IF ( I.GT.1 ) THEN
IF( IP.NE.I ) THEN
CALL SSWAP( I-1, A( I, 1 ), LDA,
$ A( IP, 1 ), LDA )
END IF
END IF
*
ELSE
*
* 2-by-2 pivot interchange
*
* Swap rows i+1 and IPIV(i) in A(i:N,1:i-1)
*
IP = -IPIV( I )
IF ( I.GT.1 ) THEN
IF( IP.NE.(I+1) ) THEN
CALL SSWAP( I-1, A( I+1, 1 ), LDA,
$ A( IP, 1 ), LDA )
END IF
END IF
*
* Convert IPIV
* There is no interchnge of rows i and and IPIV(i),
* so this should be reflected in IPIV format for
* *SYTRF_RK ( or *SYTRF_BK)
*
IPIV( I ) = I
*
I = I + 1
*
END IF
I = I + 1
END DO
*
ELSE
*
* Revert A (A is lower)
*
*
* Revert PERMUTATIONS and IPIV
*
* Apply permutaions to submatrices of lower part of A
* in reverse factorization order where i decreases from N to 1
*
I = N
DO WHILE ( I.GE.1 )
IF( IPIV( I ).GT.0 ) THEN
*
* 1-by-1 pivot interchange
*
* Swap rows i and IPIV(i) in A(i:N,1:i-1)
*
IP = IPIV( I )
IF ( I.GT.1 ) THEN
IF( IP.NE.I ) THEN
CALL SSWAP( I-1, A( IP, 1 ), LDA,
$ A( I, 1 ), LDA )
END IF
END IF
*
ELSE
*
* 2-by-2 pivot interchange
*
* Swap rows i+1 and IPIV(i) in A(i:N,1:i-1)
*
I = I - 1
IP = -IPIV( I )
IF ( I.GT.1 ) THEN
IF( IP.NE.(I+1) ) THEN
CALL SSWAP( I-1, A( IP, 1 ), LDA,
$ A( I+1, 1 ), LDA )
END IF
END IF
*
* Convert IPIV
* There is one interchange of rows i+1 and IPIV(i+1),
* so this should be recorded in consecutive entries
* in IPIV format for *SYTRF
*
IPIV( I ) = IPIV( I+1 )
*
END IF
I = I - 1
END DO
*
* Revert VALUE
* Assign subdiagonal entries of D from array E to
* subgiagonal entries of A.
*
I = 1
DO WHILE ( I.LE.N-1 )
IF( IPIV( I ).LT.0 ) THEN
A( I + 1, I ) = E( I )
I = I + 1
END IF
I = I + 1
END DO
*
END IF
*
* End A is LOWER
*
END IF
RETURN
*
* End of SSYCONVF
*
END
|