summaryrefslogtreecommitdiff
path: root/SRC/sspsvx.f
blob: 52819b139be4064a41b135a5cb9fb35fe31397b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
*> \brief <b> SSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SSPSVX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspsvx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspsvx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspsvx.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
*                          LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          FACT, UPLO
*       INTEGER            INFO, LDB, LDX, N, NRHS
*       REAL               RCOND
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * ), IWORK( * )
*       REAL               AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
*      $                   FERR( * ), WORK( * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
*> A = L*D*L**T to compute the solution to a real system of linear
*> equations A * X = B, where A is an N-by-N symmetric matrix stored
*> in packed format and X and B are N-by-NRHS matrices.
*>
*> Error bounds on the solution and a condition estimate are also
*> provided.
*> \endverbatim
*
*> \par Description:
*  =================
*>
*> \verbatim
*>
*> The following steps are performed:
*>
*> 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
*>       A = U * D * U**T,  if UPLO = 'U', or
*>       A = L * D * L**T,  if UPLO = 'L',
*>    where U (or L) is a product of permutation and unit upper (lower)
*>    triangular matrices and D is symmetric and block diagonal with
*>    1-by-1 and 2-by-2 diagonal blocks.
*>
*> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
*>    returns with INFO = i. Otherwise, the factored form of A is used
*>    to estimate the condition number of the matrix A.  If the
*>    reciprocal of the condition number is less than machine precision,
*>    INFO = N+1 is returned as a warning, but the routine still goes on
*>    to solve for X and compute error bounds as described below.
*>
*> 3. The system of equations is solved for X using the factored form
*>    of A.
*>
*> 4. Iterative refinement is applied to improve the computed solution
*>    matrix and calculate error bounds and backward error estimates
*>    for it.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] FACT
*> \verbatim
*>          FACT is CHARACTER*1
*>          Specifies whether or not the factored form of A has been
*>          supplied on entry.
*>          = 'F':  On entry, AFP and IPIV contain the factored form of
*>                  A.  AP, AFP and IPIV will not be modified.
*>          = 'N':  The matrix A will be copied to AFP and factored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices B and X.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is REAL array, dimension (N*(N+1)/2)
*>          The upper or lower triangle of the symmetric matrix A, packed
*>          columnwise in a linear array.  The j-th column of A is stored
*>          in the array AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*>          See below for further details.
*> \endverbatim
*>
*> \param[in,out] AFP
*> \verbatim
*>          AFP is REAL array, dimension (N*(N+1)/2)
*>          If FACT = 'F', then AFP is an input argument and on entry
*>          contains the block diagonal matrix D and the multipliers used
*>          to obtain the factor U or L from the factorization
*>          A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
*>          a packed triangular matrix in the same storage format as A.
*>
*>          If FACT = 'N', then AFP is an output argument and on exit
*>          contains the block diagonal matrix D and the multipliers used
*>          to obtain the factor U or L from the factorization
*>          A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
*>          a packed triangular matrix in the same storage format as A.
*> \endverbatim
*>
*> \param[in,out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          If FACT = 'F', then IPIV is an input argument and on entry
*>          contains details of the interchanges and the block structure
*>          of D, as determined by SSPTRF.
*>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*>          interchanged and D(k,k) is a 1-by-1 diagonal block.
*>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
*>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
*>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
*>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*>
*>          If FACT = 'N', then IPIV is an output argument and on exit
*>          contains details of the interchanges and the block structure
*>          of D, as determined by SSPTRF.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          The N-by-NRHS right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is REAL array, dimension (LDX,NRHS)
*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is REAL
*>          The estimate of the reciprocal condition number of the matrix
*>          A.  If RCOND is less than the machine precision (in
*>          particular, if RCOND = 0), the matrix is singular to working
*>          precision.  This condition is indicated by a return code of
*>          INFO > 0.
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*>          FERR is REAL array, dimension (NRHS)
*>          The estimated forward error bound for each solution vector
*>          X(j) (the j-th column of the solution matrix X).
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
*>          is an estimated upper bound for the magnitude of the largest
*>          element in (X(j) - XTRUE) divided by the magnitude of the
*>          largest element in X(j).  The estimate is as reliable as
*>          the estimate for RCOND, and is almost always a slight
*>          overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*>          BERR is REAL array, dimension (NRHS)
*>          The componentwise relative backward error of each solution
*>          vector X(j) (i.e., the smallest relative change in
*>          any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, and i is
*>                <= N:  D(i,i) is exactly zero.  The factorization
*>                       has been completed but the factor D is exactly
*>                       singular, so the solution and error bounds could
*>                       not be computed. RCOND = 0 is returned.
*>                = N+1: D is nonsingular, but RCOND is less than machine
*>                       precision, meaning that the matrix is singular
*>                       to working precision.  Nevertheless, the
*>                       solution and error bounds are computed because
*>                       there are a number of situations where the
*>                       computed solution can be more accurate than the
*>                       value of RCOND would suggest.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup realOTHERsolve
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The packed storage scheme is illustrated by the following example
*>  when N = 4, UPLO = 'U':
*>
*>  Two-dimensional storage of the symmetric matrix A:
*>
*>     a11 a12 a13 a14
*>         a22 a23 a24
*>             a33 a34     (aij = aji)
*>                 a44
*>
*>  Packed storage of the upper triangle of A:
*>
*>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
     $                   LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.7.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     April 2012
*
*     .. Scalar Arguments ..
      CHARACTER          FACT, UPLO
      INTEGER            INFO, LDB, LDX, N, NRHS
      REAL               RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * ), IWORK( * )
      REAL               AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
     $                   FERR( * ), WORK( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOFACT
      REAL               ANORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANSP
      EXTERNAL           LSAME, SLAMCH, SLANSP
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLACPY, SSPCON, SSPRFS, SSPTRF, SSPTRS,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
     $          THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSPSVX', -INFO )
         RETURN
      END IF
*
      IF( NOFACT ) THEN
*
*        Compute the factorization A = U*D*U**T or A = L*D*L**T.
*
         CALL SCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
         CALL SSPTRF( UPLO, N, AFP, IPIV, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.GT.0 )THEN
            RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A.
*
      ANORM = SLANSP( 'I', UPLO, N, AP, WORK )
*
*     Compute the reciprocal of the condition number of A.
*
      CALL SSPCON( UPLO, N, AFP, IPIV, ANORM, RCOND, WORK, IWORK, INFO )
*
*     Compute the solution vectors X.
*
      CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL SSPTRS( UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO )
*
*     Use iterative refinement to improve the computed solutions and
*     compute error bounds and backward error estimates for them.
*
      CALL SSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
     $             BERR, WORK, IWORK, INFO )
*
*     Set INFO = N+1 if the matrix is singular to working precision.
*
      IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
     $   INFO = N + 1
*
      RETURN
*
*     End of SSPSVX
*
      END