summaryrefslogtreecommitdiff
path: root/SRC/sspsv.f
blob: 187d5b5658880babdaa48c7c67701c5ac46d9c50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
*> \brief <b> SSPSV computes the solution to system of linear equations A * X = B for OTHER matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SSPSV + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspsv.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspsv.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspsv.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       REAL               AP( * ), B( LDB, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SSPSV computes the solution to a real system of linear equations
*>    A * X = B,
*> where A is an N-by-N symmetric matrix stored in packed format and X
*> and B are N-by-NRHS matrices.
*>
*> The diagonal pivoting method is used to factor A as
*>    A = U * D * U**T,  if UPLO = 'U', or
*>    A = L * D * L**T,  if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, D is symmetric and block diagonal with 1-by-1
*> and 2-by-2 diagonal blocks.  The factored form of A is then used to
*> solve the system of equations A * X = B.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*>          AP is REAL array, dimension (N*(N+1)/2)
*>          On entry, the upper or lower triangle of the symmetric matrix
*>          A, packed columnwise in a linear array.  The j-th column of A
*>          is stored in the array AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*>          See below for further details.
*>
*>          On exit, the block diagonal matrix D and the multipliers used
*>          to obtain the factor U or L from the factorization
*>          A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
*>          a packed triangular matrix in the same storage format as A.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          Details of the interchanges and the block structure of D, as
*>          determined by SSPTRF.  If IPIV(k) > 0, then rows and columns
*>          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
*>          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
*>          then rows and columns k-1 and -IPIV(k) were interchanged and
*>          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
*>          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
*>          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
*>          diagonal block.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          On entry, the N-by-NRHS right hand side matrix B.
*>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
*>                has been completed, but the block diagonal matrix D is
*>                exactly singular, so the solution could not be
*>                computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realOTHERsolve
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The packed storage scheme is illustrated by the following example
*>  when N = 4, UPLO = 'U':
*>
*>  Two-dimensional storage of the symmetric matrix A:
*>
*>     a11 a12 a13 a14
*>         a22 a23 a24
*>             a33 a34     (aij = aji)
*>                 a44
*>
*>  Packed storage of the upper triangle of A:
*>
*>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
*
*  -- LAPACK driver routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               AP( * ), B( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SSPTRF, SSPTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSPSV ', -INFO )
         RETURN
      END IF
*
*     Compute the factorization A = U*D*U**T or A = L*D*L**T.
*
      CALL SSPTRF( UPLO, N, AP, IPIV, INFO )
      IF( INFO.EQ.0 ) THEN
*
*        Solve the system A*X = B, overwriting B with X.
*
         CALL SSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
*
      END IF
      RETURN
*
*     End of SSPSV
*
      END