summaryrefslogtreecommitdiff
path: root/SRC/sspgst.f
blob: 4ff7a5ce621304a0ce96d1eff545bdcdd43f2a0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
*> \brief \b SSPGST
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SSPGST + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgst.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgst.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgst.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, ITYPE, N
*       ..
*       .. Array Arguments ..
*       REAL               AP( * ), BP( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SSPGST reduces a real symmetric-definite generalized eigenproblem
*> to standard form, using packed storage.
*>
*> If ITYPE = 1, the problem is A*x = lambda*B*x,
*> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
*>
*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
*> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
*>
*> B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ITYPE
*> \verbatim
*>          ITYPE is INTEGER
*>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
*>          = 2 or 3: compute U*A*U**T or L**T*A*L.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored and B is factored as
*>                  U**T*U;
*>          = 'L':  Lower triangle of A is stored and B is factored as
*>                  L*L**T.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A and B.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*>          AP is REAL array, dimension (N*(N+1)/2)
*>          On entry, the upper or lower triangle of the symmetric matrix
*>          A, packed columnwise in a linear array.  The j-th column of A
*>          is stored in the array AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*>
*>          On exit, if INFO = 0, the transformed matrix, stored in the
*>          same format as A.
*> \endverbatim
*>
*> \param[in] BP
*> \verbatim
*>          BP is REAL array, dimension (N*(N+1)/2)
*>          The triangular factor from the Cholesky factorization of B,
*>          stored in the same format as A, as returned by SPPTRF.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
*  =====================================================================
      SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
*
*  -- LAPACK computational routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, ITYPE, N
*     ..
*     .. Array Arguments ..
      REAL               AP( * ), BP( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, HALF
      PARAMETER          ( ONE = 1.0, HALF = 0.5 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
      REAL               AJJ, AKK, BJJ, BKK, CT
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SSCAL, SSPMV, SSPR2, STPMV, STPSV,
     $                   XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT
      EXTERNAL           LSAME, SDOT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSPGST', -INFO )
         RETURN
      END IF
*
      IF( ITYPE.EQ.1 ) THEN
         IF( UPPER ) THEN
*
*           Compute inv(U**T)*A*inv(U)
*
*           J1 and JJ are the indices of A(1,j) and A(j,j)
*
            JJ = 0
            DO 10 J = 1, N
               J1 = JJ + 1
               JJ = JJ + J
*
*              Compute the j-th column of the upper triangle of A
*
               BJJ = BP( JJ )
               CALL STPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
     $                     AP( J1 ), 1 )
               CALL SSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
     $                     AP( J1 ), 1 )
               CALL SSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
               AP( JJ ) = ( AP( JJ )-SDOT( J-1, AP( J1 ), 1, BP( J1 ),
     $                    1 ) ) / BJJ
   10       CONTINUE
         ELSE
*
*           Compute inv(L)*A*inv(L**T)
*
*           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
*
            KK = 1
            DO 20 K = 1, N
               K1K1 = KK + N - K + 1
*
*              Update the lower triangle of A(k:n,k:n)
*
               AKK = AP( KK )
               BKK = BP( KK )
               AKK = AKK / BKK**2
               AP( KK ) = AKK
               IF( K.LT.N ) THEN
                  CALL SSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
                  CT = -HALF*AKK
                  CALL SAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
                  CALL SSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
     $                        BP( KK+1 ), 1, AP( K1K1 ) )
                  CALL SAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
                  CALL STPSV( UPLO, 'No transpose', 'Non-unit', N-K,
     $                        BP( K1K1 ), AP( KK+1 ), 1 )
               END IF
               KK = K1K1
   20       CONTINUE
         END IF
      ELSE
         IF( UPPER ) THEN
*
*           Compute U*A*U**T
*
*           K1 and KK are the indices of A(1,k) and A(k,k)
*
            KK = 0
            DO 30 K = 1, N
               K1 = KK + 1
               KK = KK + K
*
*              Update the upper triangle of A(1:k,1:k)
*
               AKK = AP( KK )
               BKK = BP( KK )
               CALL STPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
     $                     AP( K1 ), 1 )
               CT = HALF*AKK
               CALL SAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
               CALL SSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
     $                     AP )
               CALL SAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
               CALL SSCAL( K-1, BKK, AP( K1 ), 1 )
               AP( KK ) = AKK*BKK**2
   30       CONTINUE
         ELSE
*
*           Compute L**T *A*L
*
*           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
*
            JJ = 1
            DO 40 J = 1, N
               J1J1 = JJ + N - J + 1
*
*              Compute the j-th column of the lower triangle of A
*
               AJJ = AP( JJ )
               BJJ = BP( JJ )
               AP( JJ ) = AJJ*BJJ + SDOT( N-J, AP( JJ+1 ), 1,
     $                    BP( JJ+1 ), 1 )
               CALL SSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
               CALL SSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
     $                     ONE, AP( JJ+1 ), 1 )
               CALL STPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
     $                     BP( JJ ), AP( JJ ), 1 )
               JJ = J1J1
   40       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of SSPGST
*
      END