1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
SUBROUTINE SSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
*
* -- LAPACK driver routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, LDZ, N
* ..
* .. Array Arguments ..
REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SSPEV computes all the eigenvalues and, optionally, eigenvectors of a
* real symmetric matrix A in packed storage.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input/output) REAL array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*
* On exit, AP is overwritten by values generated during the
* reduction to tridiagonal form. If UPLO = 'U', the diagonal
* and first superdiagonal of the tridiagonal matrix T overwrite
* the corresponding elements of A, and if UPLO = 'L', the
* diagonal and first subdiagonal of T overwrite the
* corresponding elements of A.
*
* W (output) REAL array, dimension (N)
* If INFO = 0, the eigenvalues in ascending order.
*
* Z (output) REAL array, dimension (LDZ, N)
* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
* eigenvectors of the matrix A, with the i-th column of Z
* holding the eigenvector associated with W(i).
* If JOBZ = 'N', then Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* WORK (workspace) REAL array, dimension (3*N)
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: if INFO = i, the algorithm failed to converge; i
* off-diagonal elements of an intermediate tridiagonal
* form did not converge to zero.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL WANTZ
INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE
REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
$ SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANSP
EXTERNAL LSAME, SLAMCH, SLANSP
* ..
* .. External Subroutines ..
EXTERNAL SOPGTR, SSCAL, SSPTRD, SSTEQR, SSTERF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
$ THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -7
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSPEV ', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( N.EQ.1 ) THEN
W( 1 ) = AP( 1 )
IF( WANTZ )
$ Z( 1, 1 ) = ONE
RETURN
END IF
*
* Get machine constants.
*
SAFMIN = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = SQRT( BIGNUM )
*
* Scale matrix to allowable range, if necessary.
*
ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
ISCALE = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 ) THEN
CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
END IF
*
* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
*
INDE = 1
INDTAU = INDE + N
CALL SSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
*
* For eigenvalues only, call SSTERF. For eigenvectors, first call
* SOPGTR to generate the orthogonal matrix, then call SSTEQR.
*
IF( .NOT.WANTZ ) THEN
CALL SSTERF( N, W, WORK( INDE ), INFO )
ELSE
INDWRK = INDTAU + N
CALL SOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
$ WORK( INDWRK ), IINFO )
CALL SSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDTAU ),
$ INFO )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 ) THEN
IF( INFO.EQ.0 ) THEN
IMAX = N
ELSE
IMAX = INFO - 1
END IF
CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
END IF
*
RETURN
*
* End of SSPEV
*
END
|