summaryrefslogtreecommitdiff
path: root/SRC/ssbgv.f
blob: 19e0d2108431ddace84360cf9546fc0e909c07b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
*> \brief \b SSBGST
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> Download SSBGV + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbgv.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbgv.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbgv.f"> 
*> [TXT]</a> 
*
*  Definition
*  ==========
*
*       SUBROUTINE SSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
*                         LDZ, WORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          JOBZ, UPLO
*       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
*       ..
*       .. Array Arguments ..
*       REAL               AB( LDAB, * ), BB( LDBB, * ), W( * ),
*      $                   WORK( * ), Z( LDZ, * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SSBGV computes all the eigenvalues, and optionally, the eigenvectors
*> of a real generalized symmetric-definite banded eigenproblem, of
*> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
*> and banded, and B is also positive definite.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] JOBZ
*> \verbatim
*>          JOBZ is CHARACTER*1
*>          = 'N':  Compute eigenvalues only;
*>          = 'V':  Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangles of A and B are stored;
*>          = 'L':  Lower triangles of A and B are stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A and B.  N >= 0.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*>          KA is INTEGER
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
*> \endverbatim
*>
*> \param[in] KB
*> \verbatim
*>          KB is INTEGER
*>          The number of superdiagonals of the matrix B if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is REAL array, dimension (LDAB, N)
*>          On entry, the upper or lower triangle of the symmetric band
*>          matrix A, stored in the first ka+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
*> \endverbatim
*> \verbatim
*>          On exit, the contents of AB are destroyed.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KA+1.
*> \endverbatim
*>
*> \param[in,out] BB
*> \verbatim
*>          BB is REAL array, dimension (LDBB, N)
*>          On entry, the upper or lower triangle of the symmetric band
*>          matrix B, stored in the first kb+1 rows of the array.  The
*>          j-th column of B is stored in the j-th column of the array BB
*>          as follows:
*>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
*> \endverbatim
*> \verbatim
*>          On exit, the factor S from the split Cholesky factorization
*>          B = S**T*S, as returned by SPBSTF.
*> \endverbatim
*>
*> \param[in] LDBB
*> \verbatim
*>          LDBB is INTEGER
*>          The leading dimension of the array BB.  LDBB >= KB+1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is REAL array, dimension (N)
*>          If INFO = 0, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is REAL array, dimension (LDZ, N)
*>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
*>          eigenvectors, with the i-th column of Z holding the
*>          eigenvector associated with W(i). The eigenvectors are
*>          normalized so that Z**T*B*Z = I.
*>          If JOBZ = 'N', then Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= 1, and if
*>          JOBZ = 'V', LDZ >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, and i is:
*>             <= N:  the algorithm failed to converge:
*>                    i off-diagonal elements of an intermediate
*>                    tridiagonal form did not converge to zero;
*>             > N:   if INFO = N + i, for 1 <= i <= N, then SPBSTF
*>                    returned INFO = i: B is not positive definite.
*>                    The factorization of B could not be completed and
*>                    no eigenvalues or eigenvectors were computed.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realOTHEReigen
*
*  =====================================================================
      SUBROUTINE SSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
     $                  LDZ, WORK, INFO )
*
*  -- LAPACK eigen routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
*     ..
*     .. Array Arguments ..
      REAL               AB( LDAB, * ), BB( LDBB, * ), W( * ),
     $                   WORK( * ), Z( LDZ, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            UPPER, WANTZ
      CHARACTER          VECT
      INTEGER            IINFO, INDE, INDWRK
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SPBSTF, SSBGST, SSBTRD, SSTEQR, SSTERF, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KA.LT.0 ) THEN
         INFO = -4
      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KA+1 ) THEN
         INFO = -7
      ELSE IF( LDBB.LT.KB+1 ) THEN
         INFO = -9
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSBGV ', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a split Cholesky factorization of B.
*
      CALL SPBSTF( UPLO, N, KB, BB, LDBB, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem.
*
      INDE = 1
      INDWRK = INDE + N
      CALL SSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
     $             WORK( INDWRK ), IINFO )
*
*     Reduce to tridiagonal form.
*
      IF( WANTZ ) THEN
         VECT = 'U'
      ELSE
         VECT = 'N'
      END IF
      CALL SSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
     $             WORK( INDWRK ), IINFO )
*
*     For eigenvalues only, call SSTERF.  For eigenvectors, call SSTEQR.
*
      IF( .NOT.WANTZ ) THEN
         CALL SSTERF( N, W, WORK( INDE ), INFO )
      ELSE
         CALL SSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
     $                INFO )
      END IF
      RETURN
*
*     End of SSBGV
*
      END