summaryrefslogtreecommitdiff
path: root/SRC/sposvx.f
blob: 605106810810e0298b525488c0d0249e8227cff7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
*> \brief <b> SPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SPOSVX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sposvx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sposvx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sposvx.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
*                          S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
*                          IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          EQUED, FACT, UPLO
*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
*       REAL               RCOND
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       REAL               A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
*      $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
*      $                   X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
*> compute the solution to a real system of linear equations
*>    A * X = B,
*> where A is an N-by-N symmetric positive definite matrix and X and B
*> are N-by-NRHS matrices.
*>
*> Error bounds on the solution and a condition estimate are also
*> provided.
*> \endverbatim
*
*> \par Description:
*  =================
*>
*> \verbatim
*>
*> The following steps are performed:
*>
*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
*>    the system:
*>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
*>    Whether or not the system will be equilibrated depends on the
*>    scaling of the matrix A, but if equilibration is used, A is
*>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
*>
*> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
*>    factor the matrix A (after equilibration if FACT = 'E') as
*>       A = U**T* U,  if UPLO = 'U', or
*>       A = L * L**T,  if UPLO = 'L',
*>    where U is an upper triangular matrix and L is a lower triangular
*>    matrix.
*>
*> 3. If the leading i-by-i principal minor is not positive definite,
*>    then the routine returns with INFO = i. Otherwise, the factored
*>    form of A is used to estimate the condition number of the matrix
*>    A.  If the reciprocal of the condition number is less than machine
*>    precision, INFO = N+1 is returned as a warning, but the routine
*>    still goes on to solve for X and compute error bounds as
*>    described below.
*>
*> 4. The system of equations is solved for X using the factored form
*>    of A.
*>
*> 5. Iterative refinement is applied to improve the computed solution
*>    matrix and calculate error bounds and backward error estimates
*>    for it.
*>
*> 6. If equilibration was used, the matrix X is premultiplied by
*>    diag(S) so that it solves the original system before
*>    equilibration.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] FACT
*> \verbatim
*>          FACT is CHARACTER*1
*>          Specifies whether or not the factored form of the matrix A is
*>          supplied on entry, and if not, whether the matrix A should be
*>          equilibrated before it is factored.
*>          = 'F':  On entry, AF contains the factored form of A.
*>                  If EQUED = 'Y', the matrix A has been equilibrated
*>                  with scaling factors given by S.  A and AF will not
*>                  be modified.
*>          = 'N':  The matrix A will be copied to AF and factored.
*>          = 'E':  The matrix A will be equilibrated if necessary, then
*>                  copied to AF and factored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices B and X.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the symmetric matrix A, except if FACT = 'F' and
*>          EQUED = 'Y', then A must contain the equilibrated matrix
*>          diag(S)*A*diag(S).  If UPLO = 'U', the leading
*>          N-by-N upper triangular part of A contains the upper
*>          triangular part of the matrix A, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading N-by-N lower triangular part of A contains the lower
*>          triangular part of the matrix A, and the strictly upper
*>          triangular part of A is not referenced.  A is not modified if
*>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
*>
*>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*>          diag(S)*A*diag(S).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] AF
*> \verbatim
*>          AF is REAL array, dimension (LDAF,N)
*>          If FACT = 'F', then AF is an input argument and on entry
*>          contains the triangular factor U or L from the Cholesky
*>          factorization A = U**T*U or A = L*L**T, in the same storage
*>          format as A.  If EQUED .ne. 'N', then AF is the factored form
*>          of the equilibrated matrix diag(S)*A*diag(S).
*>
*>          If FACT = 'N', then AF is an output argument and on exit
*>          returns the triangular factor U or L from the Cholesky
*>          factorization A = U**T*U or A = L*L**T of the original
*>          matrix A.
*>
*>          If FACT = 'E', then AF is an output argument and on exit
*>          returns the triangular factor U or L from the Cholesky
*>          factorization A = U**T*U or A = L*L**T of the equilibrated
*>          matrix A (see the description of A for the form of the
*>          equilibrated matrix).
*> \endverbatim
*>
*> \param[in] LDAF
*> \verbatim
*>          LDAF is INTEGER
*>          The leading dimension of the array AF.  LDAF >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] EQUED
*> \verbatim
*>          EQUED is CHARACTER*1
*>          Specifies the form of equilibration that was done.
*>          = 'N':  No equilibration (always true if FACT = 'N').
*>          = 'Y':  Equilibration was done, i.e., A has been replaced by
*>                  diag(S) * A * diag(S).
*>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
*>          output argument.
*> \endverbatim
*>
*> \param[in,out] S
*> \verbatim
*>          S is REAL array, dimension (N)
*>          The scale factors for A; not accessed if EQUED = 'N'.  S is
*>          an input argument if FACT = 'F'; otherwise, S is an output
*>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
*>          must be positive.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          On entry, the N-by-NRHS right hand side matrix B.
*>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
*>          B is overwritten by diag(S) * B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is REAL array, dimension (LDX,NRHS)
*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
*>          the original system of equations.  Note that if EQUED = 'Y',
*>          A and B are modified on exit, and the solution to the
*>          equilibrated system is inv(diag(S))*X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is REAL
*>          The estimate of the reciprocal condition number of the matrix
*>          A after equilibration (if done).  If RCOND is less than the
*>          machine precision (in particular, if RCOND = 0), the matrix
*>          is singular to working precision.  This condition is
*>          indicated by a return code of INFO > 0.
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*>          FERR is REAL array, dimension (NRHS)
*>          The estimated forward error bound for each solution vector
*>          X(j) (the j-th column of the solution matrix X).
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
*>          is an estimated upper bound for the magnitude of the largest
*>          element in (X(j) - XTRUE) divided by the magnitude of the
*>          largest element in X(j).  The estimate is as reliable as
*>          the estimate for RCOND, and is almost always a slight
*>          overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*>          BERR is REAL array, dimension (NRHS)
*>          The componentwise relative backward error of each solution
*>          vector X(j) (i.e., the smallest relative change in
*>          any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*>          > 0: if INFO = i, and i is
*>                <= N:  the leading minor of order i of A is
*>                       not positive definite, so the factorization
*>                       could not be completed, and the solution has not
*>                       been computed. RCOND = 0 is returned.
*>                = N+1: U is nonsingular, but RCOND is less than machine
*>                       precision, meaning that the matrix is singular
*>                       to working precision.  Nevertheless, the
*>                       solution and error bounds are computed because
*>                       there are a number of situations where the
*>                       computed solution can be more accurate than the
*>                       value of RCOND would suggest.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup realPOsolve
*
*  =====================================================================
      SUBROUTINE SPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
     $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
     $                   IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     April 2012
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, UPLO
      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
      REAL               RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
     $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            EQUIL, NOFACT, RCEQU
      INTEGER            I, INFEQU, J
      REAL               AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANSY
      EXTERNAL           LSAME, SLAMCH, SLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLACPY, SLAQSY, SPOCON, SPOEQU, SPORFS, SPOTRF,
     $                   SPOTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      EQUIL = LSAME( FACT, 'E' )
      IF( NOFACT .OR. EQUIL ) THEN
         EQUED = 'N'
         RCEQU = .FALSE.
      ELSE
         RCEQU = LSAME( EQUED, 'Y' )
         SMLNUM = SLAMCH( 'Safe minimum' )
         BIGNUM = ONE / SMLNUM
      END IF
*
*     Test the input parameters.
*
      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
     $     THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
     $          THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
         INFO = -9
      ELSE
         IF( RCEQU ) THEN
            SMIN = BIGNUM
            SMAX = ZERO
            DO 10 J = 1, N
               SMIN = MIN( SMIN, S( J ) )
               SMAX = MAX( SMAX, S( J ) )
   10       CONTINUE
            IF( SMIN.LE.ZERO ) THEN
               INFO = -10
            ELSE IF( N.GT.0 ) THEN
               SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
            ELSE
               SCOND = ONE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( LDB.LT.MAX( 1, N ) ) THEN
               INFO = -12
            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
               INFO = -14
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPOSVX', -INFO )
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*        Compute row and column scalings to equilibrate the matrix A.
*
         CALL SPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
         IF( INFEQU.EQ.0 ) THEN
*
*           Equilibrate the matrix.
*
            CALL SLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
            RCEQU = LSAME( EQUED, 'Y' )
         END IF
      END IF
*
*     Scale the right hand side.
*
      IF( RCEQU ) THEN
         DO 30 J = 1, NRHS
            DO 20 I = 1, N
               B( I, J ) = S( I )*B( I, J )
   20       CONTINUE
   30    CONTINUE
      END IF
*
      IF( NOFACT .OR. EQUIL ) THEN
*
*        Compute the Cholesky factorization A = U**T *U or A = L*L**T.
*
         CALL SLACPY( UPLO, N, N, A, LDA, AF, LDAF )
         CALL SPOTRF( UPLO, N, AF, LDAF, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.GT.0 )THEN
            RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A.
*
      ANORM = SLANSY( '1', UPLO, N, A, LDA, WORK )
*
*     Compute the reciprocal of the condition number of A.
*
      CALL SPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
*
*     Compute the solution matrix X.
*
      CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL SPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL SPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
     $             FERR, BERR, WORK, IWORK, INFO )
*
*     Transform the solution matrix X to a solution of the original
*     system.
*
      IF( RCEQU ) THEN
         DO 50 J = 1, NRHS
            DO 40 I = 1, N
               X( I, J ) = S( I )*X( I, J )
   40       CONTINUE
   50    CONTINUE
         DO 60 J = 1, NRHS
            FERR( J ) = FERR( J ) / SCOND
   60    CONTINUE
      END IF
*
*     Set INFO = N+1 if the matrix is singular to working precision.
*
      IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
     $   INFO = N + 1
*
      RETURN
*
*     End of SPOSVX
*
      END