summaryrefslogtreecommitdiff
path: root/SRC/spbequ.f
blob: ab7533fc32ef2e539bc29337a850a00240bd03d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
*> \brief \b SPBEQU
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SPBEQU + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spbequ.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spbequ.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spbequ.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition
*  ==========
*
*       SUBROUTINE SPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, KD, LDAB, N
*       REAL               AMAX, SCOND
*       ..
*       .. Array Arguments ..
*       REAL               AB( LDAB, * ), S( * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SPBEQU computes row and column scalings intended to equilibrate a
*> symmetric positive definite band matrix A and reduce its condition
*> number (with respect to the two-norm).  S contains the scale factors,
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
*> choice of S puts the condition number of B within a factor N of the
*> smallest possible condition number over all possible diagonal
*> scalings.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangular of A is stored;
*>          = 'L':  Lower triangular of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is REAL array, dimension (LDAB,N)
*>          The upper or lower triangle of the symmetric band matrix A,
*>          stored in the first KD+1 rows of the array.  The j-th column
*>          of A is stored in the j-th column of the array AB as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array A.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension (N)
*>          If INFO = 0, S contains the scale factors for A.
*> \endverbatim
*>
*> \param[out] SCOND
*> \verbatim
*>          SCOND is REAL
*>          If INFO = 0, S contains the ratio of the smallest S(i) to
*>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
*>          large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*>          AMAX is REAL
*>          Absolute value of largest matrix element.  If AMAX is very
*>          close to overflow or very close to underflow, the matrix
*>          should be scaled.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
*  =====================================================================
      SUBROUTINE SPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO )
*
*  -- LAPACK computational routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, KD, LDAB, N
      REAL               AMAX, SCOND
*     ..
*     .. Array Arguments ..
      REAL               AB( LDAB, * ), S( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, J
      REAL               SMIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KD.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPBEQU', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         SCOND = ONE
         AMAX = ZERO
         RETURN
      END IF
*
      IF( UPPER ) THEN
         J = KD + 1
      ELSE
         J = 1
      END IF
*
*     Initialize SMIN and AMAX.
*
      S( 1 ) = AB( J, 1 )
      SMIN = S( 1 )
      AMAX = S( 1 )
*
*     Find the minimum and maximum diagonal elements.
*
      DO 10 I = 2, N
         S( I ) = AB( J, I )
         SMIN = MIN( SMIN, S( I ) )
         AMAX = MAX( AMAX, S( I ) )
   10 CONTINUE
*
      IF( SMIN.LE.ZERO ) THEN
*
*        Find the first non-positive diagonal element and return.
*
         DO 20 I = 1, N
            IF( S( I ).LE.ZERO ) THEN
               INFO = I
               RETURN
            END IF
   20    CONTINUE
      ELSE
*
*        Set the scale factors to the reciprocals
*        of the diagonal elements.
*
         DO 30 I = 1, N
            S( I ) = ONE / SQRT( S( I ) )
   30    CONTINUE
*
*        Compute SCOND = min(S(I)) / max(S(I))
*
         SCOND = SQRT( SMIN ) / SQRT( AMAX )
      END IF
      RETURN
*
*     End of SPBEQU
*
      END