summaryrefslogtreecommitdiff
path: root/SRC/sormr2.f
blob: 83d1cd6ac495f8b8290239b6640aca591c278801 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
      SUBROUTINE SORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
     $                   WORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, K, LDA, LDC, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SORMR2 overwrites the general real m by n matrix C with
*
*        Q * C  if SIDE = 'L' and TRANS = 'N', or
*
*        Q**T* C  if SIDE = 'L' and TRANS = 'T', or
*
*        C * Q  if SIDE = 'R' and TRANS = 'N', or
*
*        C * Q**T if SIDE = 'R' and TRANS = 'T',
*
*  where Q is a real orthogonal matrix defined as the product of k
*  elementary reflectors
*
*        Q = H(1) H(2) . . . H(k)
*
*  as returned by SGERQF. Q is of order m if SIDE = 'L' and of order n
*  if SIDE = 'R'.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply Q or Q**T from the Left
*          = 'R': apply Q or Q**T from the Right
*
*  TRANS   (input) CHARACTER*1
*          = 'N': apply Q  (No transpose)
*          = 'T': apply Q' (Transpose)
*
*  M       (input) INTEGER
*          The number of rows of the matrix C. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C. N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines
*          the matrix Q.
*          If SIDE = 'L', M >= K >= 0;
*          if SIDE = 'R', N >= K >= 0.
*
*  A       (input) REAL array, dimension
*                               (LDA,M) if SIDE = 'L',
*                               (LDA,N) if SIDE = 'R'
*          The i-th row must contain the vector which defines the
*          elementary reflector H(i), for i = 1,2,...,k, as returned by
*          SGERQF in the last k rows of its array argument A.
*          A is modified by the routine but restored on exit.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,K).
*
*  TAU     (input) REAL array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by SGERQF.
*
*  C       (input/output) REAL array, dimension (LDC,N)
*          On entry, the m by n matrix C.
*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace) REAL array, dimension
*                                   (N) if SIDE = 'L',
*                                   (M) if SIDE = 'R'
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFT, NOTRAN
      INTEGER            I, I1, I2, I3, MI, NI, NQ
      REAL               AII
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARF, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
*
*     NQ is the order of Q
*
      IF( LEFT ) THEN
         NQ = M
      ELSE
         NQ = N
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORMR2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
     $   RETURN
*
      IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. ( .NOT.LEFT .AND. NOTRAN ) )
     $     THEN
         I1 = 1
         I2 = K
         I3 = 1
      ELSE
         I1 = K
         I2 = 1
         I3 = -1
      END IF
*
      IF( LEFT ) THEN
         NI = N
      ELSE
         MI = M
      END IF
*
      DO 10 I = I1, I2, I3
         IF( LEFT ) THEN
*
*           H(i) is applied to C(1:m-k+i,1:n)
*
            MI = M - K + I
         ELSE
*
*           H(i) is applied to C(1:m,1:n-k+i)
*
            NI = N - K + I
         END IF
*
*        Apply H(i)
*
         AII = A( I, NQ-K+I )
         A( I, NQ-K+I ) = ONE
         CALL SLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAU( I ), C, LDC,
     $               WORK )
         A( I, NQ-K+I ) = AII
   10 CONTINUE
      RETURN
*
*     End of SORMR2
*
      END