1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
SUBROUTINE SORM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
$ WORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, K, LDA, LDC, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* SORM2L overwrites the general real m by n matrix C with
*
* Q * C if SIDE = 'L' and TRANS = 'N', or
*
* Q**T * C if SIDE = 'L' and TRANS = 'T', or
*
* C * Q if SIDE = 'R' and TRANS = 'N', or
*
* C * Q**T if SIDE = 'R' and TRANS = 'T',
*
* where Q is a real orthogonal matrix defined as the product of k
* elementary reflectors
*
* Q = H(k) . . . H(2) H(1)
*
* as returned by SGEQLF. Q is of order m if SIDE = 'L' and of order n
* if SIDE = 'R'.
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* = 'L': apply Q or Q**T from the Left
* = 'R': apply Q or Q**T from the Right
*
* TRANS (input) CHARACTER*1
* = 'N': apply Q (No transpose)
* = 'T': apply Q**T (Transpose)
*
* M (input) INTEGER
* The number of rows of the matrix C. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix C. N >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines
* the matrix Q.
* If SIDE = 'L', M >= K >= 0;
* if SIDE = 'R', N >= K >= 0.
*
* A (input) REAL array, dimension (LDA,K)
* The i-th column must contain the vector which defines the
* elementary reflector H(i), for i = 1,2,...,k, as returned by
* SGEQLF in the last k columns of its array argument A.
* A is modified by the routine but restored on exit.
*
* LDA (input) INTEGER
* The leading dimension of the array A.
* If SIDE = 'L', LDA >= max(1,M);
* if SIDE = 'R', LDA >= max(1,N).
*
* TAU (input) REAL array, dimension (K)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by SGEQLF.
*
* C (input/output) REAL array, dimension (LDC,N)
* On entry, the m by n matrix C.
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* WORK (workspace) REAL array, dimension
* (N) if SIDE = 'L',
* (M) if SIDE = 'R'
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LEFT, NOTRAN
INTEGER I, I1, I2, I3, MI, NI, NQ
REAL AII
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SLARF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
NOTRAN = LSAME( TRANS, 'N' )
*
* NQ is the order of Q
*
IF( LEFT ) THEN
NQ = M
ELSE
NQ = N
END IF
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SORM2L', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
$ RETURN
*
IF( ( LEFT .AND. NOTRAN ) .OR. ( .NOT.LEFT .AND. .NOT.NOTRAN ) )
$ THEN
I1 = 1
I2 = K
I3 = 1
ELSE
I1 = K
I2 = 1
I3 = -1
END IF
*
IF( LEFT ) THEN
NI = N
ELSE
MI = M
END IF
*
DO 10 I = I1, I2, I3
IF( LEFT ) THEN
*
* H(i) is applied to C(1:m-k+i,1:n)
*
MI = M - K + I
ELSE
*
* H(i) is applied to C(1:m,1:n-k+i)
*
NI = N - K + I
END IF
*
* Apply H(i)
*
AII = A( NQ-K+I, I )
A( NQ-K+I, I ) = ONE
CALL SLARF( SIDE, MI, NI, A( 1, I ), 1, TAU( I ), C, LDC,
$ WORK )
A( NQ-K+I, I ) = AII
10 CONTINUE
RETURN
*
* End of SORM2L
*
END
|