1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER VECT
INTEGER INFO, K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* SORGBR generates one of the real orthogonal matrices Q or P**T
* determined by SGEBRD when reducing a real matrix A to bidiagonal
* form: A = Q * B * P**T. Q and P**T are defined as products of
* elementary reflectors H(i) or G(i) respectively.
*
* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
* is of order M:
* if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
* columns of Q, where m >= n >= k;
* if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
* M-by-M matrix.
*
* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
* is of order N:
* if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
* rows of P**T, where n >= m >= k;
* if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
* an N-by-N matrix.
*
* Arguments
* =========
*
* VECT (input) CHARACTER*1
* Specifies whether the matrix Q or the matrix P**T is
* required, as defined in the transformation applied by SGEBRD:
* = 'Q': generate Q;
* = 'P': generate P**T.
*
* M (input) INTEGER
* The number of rows of the matrix Q or P**T to be returned.
* M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q or P**T to be returned.
* N >= 0.
* If VECT = 'Q', M >= N >= min(M,K);
* if VECT = 'P', N >= M >= min(N,K).
*
* K (input) INTEGER
* If VECT = 'Q', the number of columns in the original M-by-K
* matrix reduced by SGEBRD.
* If VECT = 'P', the number of rows in the original K-by-N
* matrix reduced by SGEBRD.
* K >= 0.
*
* A (input/output) REAL array, dimension (LDA,N)
* On entry, the vectors which define the elementary reflectors,
* as returned by SGEBRD.
* On exit, the M-by-N matrix Q or P**T.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* TAU (input) REAL array, dimension
* (min(M,K)) if VECT = 'Q'
* (min(N,K)) if VECT = 'P'
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i) or G(i), which determines Q or P**T, as
* returned by SGEBRD in its array argument TAUQ or TAUP.
*
* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,min(M,N)).
* For optimum performance LWORK >= min(M,N)*NB, where NB
* is the optimal blocksize.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, WANTQ
INTEGER I, IINFO, J, LWKOPT, MN, NB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL SORGLQ, SORGQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
WANTQ = LSAME( VECT, 'Q' )
MN = MIN( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
$ K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
$ MIN( N, K ) ) ) ) THEN
INFO = -3
ELSE IF( K.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
INFO = -9
END IF
*
IF( INFO.EQ.0 ) THEN
IF( WANTQ ) THEN
NB = ILAENV( 1, 'SORGQR', ' ', M, N, K, -1 )
ELSE
NB = ILAENV( 1, 'SORGLQ', ' ', M, N, K, -1 )
END IF
LWKOPT = MAX( 1, MN )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SORGBR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( WANTQ ) THEN
*
* Form Q, determined by a call to SGEBRD to reduce an m-by-k
* matrix
*
IF( M.GE.K ) THEN
*
* If m >= k, assume m >= n >= k
*
CALL SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
ELSE
*
* If m < k, assume m = n
*
* Shift the vectors which define the elementary reflectors one
* column to the right, and set the first row and column of Q
* to those of the unit matrix
*
DO 20 J = M, 2, -1
A( 1, J ) = ZERO
DO 10 I = J + 1, M
A( I, J ) = A( I, J-1 )
10 CONTINUE
20 CONTINUE
A( 1, 1 ) = ONE
DO 30 I = 2, M
A( I, 1 ) = ZERO
30 CONTINUE
IF( M.GT.1 ) THEN
*
* Form Q(2:m,2:m)
*
CALL SORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
$ LWORK, IINFO )
END IF
END IF
ELSE
*
* Form P', determined by a call to SGEBRD to reduce a k-by-n
* matrix
*
IF( K.LT.N ) THEN
*
* If k < n, assume k <= m <= n
*
CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
ELSE
*
* If k >= n, assume m = n
*
* Shift the vectors which define the elementary reflectors one
* row downward, and set the first row and column of P' to
* those of the unit matrix
*
A( 1, 1 ) = ONE
DO 40 I = 2, N
A( I, 1 ) = ZERO
40 CONTINUE
DO 60 J = 2, N
DO 50 I = J - 1, 2, -1
A( I, J ) = A( I-1, J )
50 CONTINUE
A( 1, J ) = ZERO
60 CONTINUE
IF( N.GT.1 ) THEN
*
* Form P'(2:n,2:n)
*
CALL SORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
$ LWORK, IINFO )
END IF
END IF
END IF
WORK( 1 ) = LWKOPT
RETURN
*
* End of SORGBR
*
END
|