summaryrefslogtreecommitdiff
path: root/SRC/slasv2.f
blob: 4a308a9899b2429781625d3648307da2576f84e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
*> \brief \b SLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SLASV2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasv2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasv2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasv2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
* 
*       .. Scalar Arguments ..
*       REAL               CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLASV2 computes the singular value decomposition of a 2-by-2
*> triangular matrix
*>    [  F   G  ]
*>    [  0   H  ].
*> On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
*> smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
*> right singular vectors for abs(SSMAX), giving the decomposition
*>
*>    [ CSL  SNL ] [  F   G  ] [ CSR -SNR ]  =  [ SSMAX   0   ]
*>    [-SNL  CSL ] [  0   H  ] [ SNR  CSR ]     [  0    SSMIN ].
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] F
*> \verbatim
*>          F is REAL
*>          The (1,1) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] G
*> \verbatim
*>          G is REAL
*>          The (1,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*>          H is REAL
*>          The (2,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[out] SSMIN
*> \verbatim
*>          SSMIN is REAL
*>          abs(SSMIN) is the smaller singular value.
*> \endverbatim
*>
*> \param[out] SSMAX
*> \verbatim
*>          SSMAX is REAL
*>          abs(SSMAX) is the larger singular value.
*> \endverbatim
*>
*> \param[out] SNL
*> \verbatim
*>          SNL is REAL
*> \endverbatim
*>
*> \param[out] CSL
*> \verbatim
*>          CSL is REAL
*>          The vector (CSL, SNL) is a unit left singular vector for the
*>          singular value abs(SSMAX).
*> \endverbatim
*>
*> \param[out] SNR
*> \verbatim
*>          SNR is REAL
*> \endverbatim
*>
*> \param[out] CSR
*> \verbatim
*>          CSR is REAL
*>          The vector (CSR, SNR) is a unit right singular vector for the
*>          singular value abs(SSMAX).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date August 2012
*
*> \ingroup auxOTHERauxiliary
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Any input parameter may be aliased with any output parameter.
*>
*>  Barring over/underflow and assuming a guard digit in subtraction, all
*>  output quantities are correct to within a few units in the last
*>  place (ulps).
*>
*>  In IEEE arithmetic, the code works correctly if one matrix element is
*>  infinite.
*>
*>  Overflow will not occur unless the largest singular value itself
*>  overflows or is within a few ulps of overflow. (On machines with
*>  partial overflow, like the Cray, overflow may occur if the largest
*>  singular value is within a factor of 2 of overflow.)
*>
*>  Underflow is harmless if underflow is gradual. Otherwise, results
*>  may correspond to a matrix modified by perturbations of size near
*>  the underflow threshold.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
*
*  -- LAPACK auxiliary routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     August 2012
*
*     .. Scalar Arguments ..
      REAL               CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               HALF
      PARAMETER          ( HALF = 0.5E0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
      REAL               FOUR
      PARAMETER          ( FOUR = 4.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            GASMAL, SWAP
      INTEGER            PMAX
      REAL               A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M,
     $                   MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN, SQRT
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Executable Statements ..
*
      FT = F
      FA = ABS( FT )
      HT = H
      HA = ABS( H )
*
*     PMAX points to the maximum absolute element of matrix
*       PMAX = 1 if F largest in absolute values
*       PMAX = 2 if G largest in absolute values
*       PMAX = 3 if H largest in absolute values
*
      PMAX = 1
      SWAP = ( HA.GT.FA )
      IF( SWAP ) THEN
         PMAX = 3
         TEMP = FT
         FT = HT
         HT = TEMP
         TEMP = FA
         FA = HA
         HA = TEMP
*
*        Now FA .ge. HA
*
      END IF
      GT = G
      GA = ABS( GT )
      IF( GA.EQ.ZERO ) THEN
*
*        Diagonal matrix
*
         SSMIN = HA
         SSMAX = FA
         CLT = ONE
         CRT = ONE
         SLT = ZERO
         SRT = ZERO
      ELSE
         GASMAL = .TRUE.
         IF( GA.GT.FA ) THEN
            PMAX = 2
            IF( ( FA / GA ).LT.SLAMCH( 'EPS' ) ) THEN
*
*              Case of very large GA
*
               GASMAL = .FALSE.
               SSMAX = GA
               IF( HA.GT.ONE ) THEN
                  SSMIN = FA / ( GA / HA )
               ELSE
                  SSMIN = ( FA / GA )*HA
               END IF
               CLT = ONE
               SLT = HT / GT
               SRT = ONE
               CRT = FT / GT
            END IF
         END IF
         IF( GASMAL ) THEN
*
*           Normal case
*
            D = FA - HA
            IF( D.EQ.FA ) THEN
*
*              Copes with infinite F or H
*
               L = ONE
            ELSE
               L = D / FA
            END IF
*
*           Note that 0 .le. L .le. 1
*
            M = GT / FT
*
*           Note that abs(M) .le. 1/macheps
*
            T = TWO - L
*
*           Note that T .ge. 1
*
            MM = M*M
            TT = T*T
            S = SQRT( TT+MM )
*
*           Note that 1 .le. S .le. 1 + 1/macheps
*
            IF( L.EQ.ZERO ) THEN
               R = ABS( M )
            ELSE
               R = SQRT( L*L+MM )
            END IF
*
*           Note that 0 .le. R .le. 1 + 1/macheps
*
            A = HALF*( S+R )
*
*           Note that 1 .le. A .le. 1 + abs(M)
*
            SSMIN = HA / A
            SSMAX = FA*A
            IF( MM.EQ.ZERO ) THEN
*
*              Note that M is very tiny
*
               IF( L.EQ.ZERO ) THEN
                  T = SIGN( TWO, FT )*SIGN( ONE, GT )
               ELSE
                  T = GT / SIGN( D, FT ) + M / T
               END IF
            ELSE
               T = ( M / ( S+T )+M / ( R+L ) )*( ONE+A )
            END IF
            L = SQRT( T*T+FOUR )
            CRT = TWO / L
            SRT = T / L
            CLT = ( CRT+SRT*M ) / A
            SLT = ( HT / FT )*SRT / A
         END IF
      END IF
      IF( SWAP ) THEN
         CSL = SRT
         SNL = CRT
         CSR = SLT
         SNR = CLT
      ELSE
         CSL = CLT
         SNL = SLT
         CSR = CRT
         SNR = SRT
      END IF
*
*     Correct signs of SSMAX and SSMIN
*
      IF( PMAX.EQ.1 )
     $   TSIGN = SIGN( ONE, CSR )*SIGN( ONE, CSL )*SIGN( ONE, F )
      IF( PMAX.EQ.2 )
     $   TSIGN = SIGN( ONE, SNR )*SIGN( ONE, CSL )*SIGN( ONE, G )
      IF( PMAX.EQ.3 )
     $   TSIGN = SIGN( ONE, SNR )*SIGN( ONE, SNL )*SIGN( ONE, H )
      SSMAX = SIGN( SSMAX, TSIGN )
      SSMIN = SIGN( SSMIN, TSIGN*SIGN( ONE, F )*SIGN( ONE, H ) )
      RETURN
*
*     End of SLASV2
*
      END