1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
|
*> \brief \b SLASR applies a sequence of plane rotations to a general rectangular matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLASR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
*
* .. Scalar Arguments ..
* CHARACTER DIRECT, PIVOT, SIDE
* INTEGER LDA, M, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), C( * ), S( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLASR applies a sequence of plane rotations to a real matrix A,
*> from either the left or the right.
*>
*> When SIDE = 'L', the transformation takes the form
*>
*> A := P*A
*>
*> and when SIDE = 'R', the transformation takes the form
*>
*> A := A*P**T
*>
*> where P is an orthogonal matrix consisting of a sequence of z plane
*> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
*> and P**T is the transpose of P.
*>
*> When DIRECT = 'F' (Forward sequence), then
*>
*> P = P(z-1) * ... * P(2) * P(1)
*>
*> and when DIRECT = 'B' (Backward sequence), then
*>
*> P = P(1) * P(2) * ... * P(z-1)
*>
*> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
*>
*> R(k) = ( c(k) s(k) )
*> = ( -s(k) c(k) ).
*>
*> When PIVOT = 'V' (Variable pivot), the rotation is performed
*> for the plane (k,k+1), i.e., P(k) has the form
*>
*> P(k) = ( 1 )
*> ( ... )
*> ( 1 )
*> ( c(k) s(k) )
*> ( -s(k) c(k) )
*> ( 1 )
*> ( ... )
*> ( 1 )
*>
*> where R(k) appears as a rank-2 modification to the identity matrix in
*> rows and columns k and k+1.
*>
*> When PIVOT = 'T' (Top pivot), the rotation is performed for the
*> plane (1,k+1), so P(k) has the form
*>
*> P(k) = ( c(k) s(k) )
*> ( 1 )
*> ( ... )
*> ( 1 )
*> ( -s(k) c(k) )
*> ( 1 )
*> ( ... )
*> ( 1 )
*>
*> where R(k) appears in rows and columns 1 and k+1.
*>
*> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
*> performed for the plane (k,z), giving P(k) the form
*>
*> P(k) = ( 1 )
*> ( ... )
*> ( 1 )
*> ( c(k) s(k) )
*> ( 1 )
*> ( ... )
*> ( 1 )
*> ( -s(k) c(k) )
*>
*> where R(k) appears in rows and columns k and z. The rotations are
*> performed without ever forming P(k) explicitly.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> Specifies whether the plane rotation matrix P is applied to
*> A on the left or the right.
*> = 'L': Left, compute A := P*A
*> = 'R': Right, compute A:= A*P**T
*> \endverbatim
*>
*> \param[in] PIVOT
*> \verbatim
*> PIVOT is CHARACTER*1
*> Specifies the plane for which P(k) is a plane rotation
*> matrix.
*> = 'V': Variable pivot, the plane (k,k+1)
*> = 'T': Top pivot, the plane (1,k+1)
*> = 'B': Bottom pivot, the plane (k,z)
*> \endverbatim
*>
*> \param[in] DIRECT
*> \verbatim
*> DIRECT is CHARACTER*1
*> Specifies whether P is a forward or backward sequence of
*> plane rotations.
*> = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
*> = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. If m <= 1, an immediate
*> return is effected.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. If n <= 1, an
*> immediate return is effected.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is REAL array, dimension
*> (M-1) if SIDE = 'L'
*> (N-1) if SIDE = 'R'
*> The cosines c(k) of the plane rotations.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is REAL array, dimension
*> (M-1) if SIDE = 'L'
*> (N-1) if SIDE = 'R'
*> The sines s(k) of the plane rotations. The 2-by-2 plane
*> rotation part of the matrix P(k), R(k), has the form
*> R(k) = ( c(k) s(k) )
*> ( -s(k) c(k) ).
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The M-by-N matrix A. On exit, A is overwritten by P*A if
*> SIDE = 'R' or by A*P**T if SIDE = 'L'.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERauxiliary
*
* =====================================================================
SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER DIRECT, PIVOT, SIDE
INTEGER LDA, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), C( * ), S( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
REAL CTEMP, STEMP, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
INFO = 1
ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
$ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
INFO = 2
ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
$ THEN
INFO = 3
ELSE IF( M.LT.0 ) THEN
INFO = 4
ELSE IF( N.LT.0 ) THEN
INFO = 5
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = 9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLASR ', INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
$ RETURN
IF( LSAME( SIDE, 'L' ) ) THEN
*
* Form P * A
*
IF( LSAME( PIVOT, 'V' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 20 J = 1, M - 1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 10 I = 1, N
TEMP = A( J+1, I )
A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
10 CONTINUE
END IF
20 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 40 J = M - 1, 1, -1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 30 I = 1, N
TEMP = A( J+1, I )
A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
30 CONTINUE
END IF
40 CONTINUE
END IF
ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 60 J = 2, M
CTEMP = C( J-1 )
STEMP = S( J-1 )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 50 I = 1, N
TEMP = A( J, I )
A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
50 CONTINUE
END IF
60 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 80 J = M, 2, -1
CTEMP = C( J-1 )
STEMP = S( J-1 )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 70 I = 1, N
TEMP = A( J, I )
A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
70 CONTINUE
END IF
80 CONTINUE
END IF
ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 100 J = 1, M - 1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 90 I = 1, N
TEMP = A( J, I )
A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
90 CONTINUE
END IF
100 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 120 J = M - 1, 1, -1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 110 I = 1, N
TEMP = A( J, I )
A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
110 CONTINUE
END IF
120 CONTINUE
END IF
END IF
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
* Form A * P**T
*
IF( LSAME( PIVOT, 'V' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 140 J = 1, N - 1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 130 I = 1, M
TEMP = A( I, J+1 )
A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
130 CONTINUE
END IF
140 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 160 J = N - 1, 1, -1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 150 I = 1, M
TEMP = A( I, J+1 )
A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
150 CONTINUE
END IF
160 CONTINUE
END IF
ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 180 J = 2, N
CTEMP = C( J-1 )
STEMP = S( J-1 )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 170 I = 1, M
TEMP = A( I, J )
A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
170 CONTINUE
END IF
180 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 200 J = N, 2, -1
CTEMP = C( J-1 )
STEMP = S( J-1 )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 190 I = 1, M
TEMP = A( I, J )
A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
190 CONTINUE
END IF
200 CONTINUE
END IF
ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 220 J = 1, N - 1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 210 I = 1, M
TEMP = A( I, J )
A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
210 CONTINUE
END IF
220 CONTINUE
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
DO 240 J = N - 1, 1, -1
CTEMP = C( J )
STEMP = S( J )
IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
DO 230 I = 1, M
TEMP = A( I, J )
A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
230 CONTINUE
END IF
240 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of SLASR
*
END
|