1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
SUBROUTINE SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
$ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
$ DN2, G, TAU )
*
* -- LAPACK routine (version 3.2.2) --
*
* -- Contributed by Osni Marques of the Lawrence Berkeley National --
* -- Laboratory and Beresford Parlett of the Univ. of California at --
* -- Berkeley --
* -- June 2010 --
*
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL IEEE
INTEGER I0, ITER, N0, NDIV, NFAIL, PP
REAL DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
$ QMAX, SIGMA, TAU
* ..
* .. Array Arguments ..
REAL Z( * )
* ..
*
* Purpose
* =======
*
* SLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
* In case of failure it changes shifts, and tries again until output
* is positive.
*
* Arguments
* =========
*
* I0 (input) INTEGER
* First index.
*
* N0 (input/output) INTEGER
* Last index.
*
* Z (input) REAL array, dimension ( 4*N )
* Z holds the qd array.
*
* PP (input/output) INTEGER
* PP=0 for ping, PP=1 for pong.
* PP=2 indicates that flipping was applied to the Z array
* and that the initial tests for deflation should not be
* performed.
*
* DMIN (output) REAL
* Minimum value of d.
*
* SIGMA (output) REAL
* Sum of shifts used in current segment.
*
* DESIG (input/output) REAL
* Lower order part of SIGMA
*
* QMAX (input) REAL
* Maximum value of q.
*
* NFAIL (output) INTEGER
* Number of times shift was too big.
*
* ITER (output) INTEGER
* Number of iterations.
*
* NDIV (output) INTEGER
* Number of divisions.
*
* IEEE (input) LOGICAL
* Flag for IEEE or non IEEE arithmetic (passed to SLASQ5).
*
* TTYPE (input/output) INTEGER
* Shift type.
*
* DMIN1 (input/output) REAL
*
* DMIN2 (input/output) REAL
*
* DN (input/output) REAL
*
* DN1 (input/output) REAL
*
* DN2 (input/output) REAL
*
* G (input/output) REAL
*
* TAU (input/output) REAL
*
* These are passed as arguments in order to save their values
* between calls to SLASQ3.
*
* =====================================================================
*
* .. Parameters ..
REAL CBIAS
PARAMETER ( CBIAS = 1.50E0 )
REAL ZERO, QURTR, HALF, ONE, TWO, HUNDRD
PARAMETER ( ZERO = 0.0E0, QURTR = 0.250E0, HALF = 0.5E0,
$ ONE = 1.0E0, TWO = 2.0E0, HUNDRD = 100.0E0 )
* ..
* .. Local Scalars ..
INTEGER IPN4, J4, N0IN, NN, TTYPE
REAL EPS, S, T, TEMP, TOL, TOL2
* ..
* .. External Subroutines ..
EXTERNAL SLASQ4, SLASQ5, SLASQ6
* ..
* .. External Function ..
REAL SLAMCH
LOGICAL SISNAN
EXTERNAL SISNAN, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
N0IN = N0
EPS = SLAMCH( 'Precision' )
TOL = EPS*HUNDRD
TOL2 = TOL**2
*
* Check for deflation.
*
10 CONTINUE
*
IF( N0.LT.I0 )
$ RETURN
IF( N0.EQ.I0 )
$ GO TO 20
NN = 4*N0 + PP
IF( N0.EQ.( I0+1 ) )
$ GO TO 40
*
* Check whether E(N0-1) is negligible, 1 eigenvalue.
*
IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
$ Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
$ GO TO 30
*
20 CONTINUE
*
Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
N0 = N0 - 1
GO TO 10
*
* Check whether E(N0-2) is negligible, 2 eigenvalues.
*
30 CONTINUE
*
IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
$ Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
$ GO TO 50
*
40 CONTINUE
*
IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
S = Z( NN-3 )
Z( NN-3 ) = Z( NN-7 )
Z( NN-7 ) = S
END IF
IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN
T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
S = Z( NN-3 )*( Z( NN-5 ) / T )
IF( S.LE.T ) THEN
S = Z( NN-3 )*( Z( NN-5 ) /
$ ( T*( ONE+SQRT( ONE+S / T ) ) ) )
ELSE
S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
END IF
T = Z( NN-7 ) + ( S+Z( NN-5 ) )
Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
Z( NN-7 ) = T
END IF
Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
N0 = N0 - 2
GO TO 10
*
50 CONTINUE
IF( PP.EQ.2 )
$ PP = 0
*
* Reverse the qd-array, if warranted.
*
IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
IPN4 = 4*( I0+N0 )
DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
TEMP = Z( J4-3 )
Z( J4-3 ) = Z( IPN4-J4-3 )
Z( IPN4-J4-3 ) = TEMP
TEMP = Z( J4-2 )
Z( J4-2 ) = Z( IPN4-J4-2 )
Z( IPN4-J4-2 ) = TEMP
TEMP = Z( J4-1 )
Z( J4-1 ) = Z( IPN4-J4-5 )
Z( IPN4-J4-5 ) = TEMP
TEMP = Z( J4 )
Z( J4 ) = Z( IPN4-J4-4 )
Z( IPN4-J4-4 ) = TEMP
60 CONTINUE
IF( N0-I0.LE.4 ) THEN
Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
Z( 4*N0-PP ) = Z( 4*I0-PP )
END IF
DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
$ Z( 4*I0+PP+3 ) )
Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
$ Z( 4*I0-PP+4 ) )
QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
DMIN = -ZERO
END IF
END IF
*
* Choose a shift.
*
CALL SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
$ DN2, TAU, TTYPE, G )
*
* Call dqds until DMIN > 0.
*
70 CONTINUE
*
CALL SLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN,
$ DN1, DN2, IEEE )
*
NDIV = NDIV + ( N0-I0+2 )
ITER = ITER + 1
*
* Check status.
*
IF( DMIN.GE.ZERO .AND. DMIN1.GT.ZERO ) THEN
*
* Success.
*
GO TO 90
*
ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.
$ Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
$ ABS( DN ).LT.TOL*SIGMA ) THEN
*
* Convergence hidden by negative DN.
*
Z( 4*( N0-1 )-PP+2 ) = ZERO
DMIN = ZERO
GO TO 90
ELSE IF( DMIN.LT.ZERO ) THEN
*
* TAU too big. Select new TAU and try again.
*
NFAIL = NFAIL + 1
IF( TTYPE.LT.-22 ) THEN
*
* Failed twice. Play it safe.
*
TAU = ZERO
ELSE IF( DMIN1.GT.ZERO ) THEN
*
* Late failure. Gives excellent shift.
*
TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
TTYPE = TTYPE - 11
ELSE
*
* Early failure. Divide by 4.
*
TAU = QURTR*TAU
TTYPE = TTYPE - 12
END IF
GO TO 70
ELSE IF( SISNAN( DMIN ) ) THEN
*
* NaN.
*
IF( TAU.EQ.ZERO ) THEN
GO TO 80
ELSE
TAU = ZERO
GO TO 70
END IF
ELSE
*
* Possible underflow. Play it safe.
*
GO TO 80
END IF
*
* Risk of underflow.
*
80 CONTINUE
CALL SLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
NDIV = NDIV + ( N0-I0+2 )
ITER = ITER + 1
TAU = ZERO
*
90 CONTINUE
IF( TAU.LT.SIGMA ) THEN
DESIG = DESIG + TAU
T = SIGMA + DESIG
DESIG = DESIG - ( T-SIGMA )
ELSE
T = SIGMA + TAU
DESIG = SIGMA - ( T-TAU ) + DESIG
END IF
SIGMA = T
*
RETURN
*
* End of SLASQ3
*
END
|