1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
*> \brief \b SLASDQ
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLASDQ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasdq.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasdq.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasdq.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition
* ==========
*
* SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
* U, LDU, C, LDC, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
* ..
* .. Array Arguments ..
* REAL C( LDC, * ), D( * ), E( * ), U( LDU, * ),
* $ VT( LDVT, * ), WORK( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SLASDQ computes the singular value decomposition (SVD) of a real
*> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
*> E, accumulating the transformations if desired. Letting B denote
*> the input bidiagonal matrix, the algorithm computes orthogonal
*> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose
*> of P). The singular values S are overwritten on D.
*>
*> The input matrix U is changed to U * Q if desired.
*> The input matrix VT is changed to P**T * VT if desired.
*> The input matrix C is changed to Q**T * C if desired.
*>
*> See "Computing Small Singular Values of Bidiagonal Matrices With
*> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
*> LAPACK Working Note #3, for a detailed description of the algorithm.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the input bidiagonal matrix
*> is upper or lower bidiagonal, and wether it is square are
*> not.
*> UPLO = 'U' or 'u' B is upper bidiagonal.
*> UPLO = 'L' or 'l' B is lower bidiagonal.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*> SQRE is INTEGER
*> = 0: then the input matrix is N-by-N.
*> = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
*> (N+1)-by-N if UPLU = 'L'.
*> \endverbatim
*> \verbatim
*> The bidiagonal matrix has
*> N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of rows and columns
*> in the matrix. N must be at least 0.
*> \endverbatim
*>
*> \param[in] NCVT
*> \verbatim
*> NCVT is INTEGER
*> On entry, NCVT specifies the number of columns of
*> the matrix VT. NCVT must be at least 0.
*> \endverbatim
*>
*> \param[in] NRU
*> \verbatim
*> NRU is INTEGER
*> On entry, NRU specifies the number of rows of
*> the matrix U. NRU must be at least 0.
*> \endverbatim
*>
*> \param[in] NCC
*> \verbatim
*> NCC is INTEGER
*> On entry, NCC specifies the number of columns of
*> the matrix C. NCC must be at least 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is REAL array, dimension (N)
*> On entry, D contains the diagonal entries of the
*> bidiagonal matrix whose SVD is desired. On normal exit,
*> D contains the singular values in ascending order.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is REAL array.
*> dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
*> On entry, the entries of E contain the offdiagonal entries
*> of the bidiagonal matrix whose SVD is desired. On normal
*> exit, E will contain 0. If the algorithm does not converge,
*> D and E will contain the diagonal and superdiagonal entries
*> of a bidiagonal matrix orthogonally equivalent to the one
*> given as input.
*> \endverbatim
*>
*> \param[in,out] VT
*> \verbatim
*> VT is REAL array, dimension (LDVT, NCVT)
*> On entry, contains a matrix which on exit has been
*> premultiplied by P**T, dimension N-by-NCVT if SQRE = 0
*> and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*> LDVT is INTEGER
*> On entry, LDVT specifies the leading dimension of VT as
*> declared in the calling (sub) program. LDVT must be at
*> least 1. If NCVT is nonzero LDVT must also be at least N.
*> \endverbatim
*>
*> \param[in,out] U
*> \verbatim
*> U is REAL array, dimension (LDU, N)
*> On entry, contains a matrix which on exit has been
*> postmultiplied by Q, dimension NRU-by-N if SQRE = 0
*> and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> On entry, LDU specifies the leading dimension of U as
*> declared in the calling (sub) program. LDU must be at
*> least max( 1, NRU ) .
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (LDC, NCC)
*> On entry, contains an N-by-NCC matrix which on exit
*> has been premultiplied by Q**T dimension N-by-NCC if SQRE = 0
*> and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> On entry, LDC specifies the leading dimension of C as
*> declared in the calling (sub) program. LDC must be at
*> least 1. If NCC is nonzero, LDC must also be at least N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (4*N)
*> Workspace. Only referenced if one of NCVT, NRU, or NCC is
*> nonzero, and if N is at least 2.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> On exit, a value of 0 indicates a successful exit.
*> If INFO < 0, argument number -INFO is illegal.
*> If INFO > 0, the algorithm did not converge, and INFO
*> specifies how many superdiagonals did not converge.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
*>
*> Based on contributions by
*> Ming Gu and Huan Ren, Computer Science Division, University of
*> California at Berkeley, USA
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
$ U, LDU, C, LDC, WORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
* ..
* .. Array Arguments ..
REAL C( LDC, * ), D( * ), E( * ), U( LDU, * ),
$ VT( LDVT, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL ROTATE
INTEGER I, ISUB, IUPLO, J, NP1, SQRE1
REAL CS, R, SMIN, SN
* ..
* .. External Subroutines ..
EXTERNAL SBDSQR, SLARTG, SLASR, SSWAP, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IUPLO = 0
IF( LSAME( UPLO, 'U' ) )
$ IUPLO = 1
IF( LSAME( UPLO, 'L' ) )
$ IUPLO = 2
IF( IUPLO.EQ.0 ) THEN
INFO = -1
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NCVT.LT.0 ) THEN
INFO = -4
ELSE IF( NRU.LT.0 ) THEN
INFO = -5
ELSE IF( NCC.LT.0 ) THEN
INFO = -6
ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
$ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
INFO = -10
ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
INFO = -12
ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
$ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
INFO = -14
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLASDQ', -INFO )
RETURN
END IF
IF( N.EQ.0 )
$ RETURN
*
* ROTATE is true if any singular vectors desired, false otherwise
*
ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
NP1 = N + 1
SQRE1 = SQRE
*
* If matrix non-square upper bidiagonal, rotate to be lower
* bidiagonal. The rotations are on the right.
*
IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
DO 10 I = 1, N - 1
CALL SLARTG( D( I ), E( I ), CS, SN, R )
D( I ) = R
E( I ) = SN*D( I+1 )
D( I+1 ) = CS*D( I+1 )
IF( ROTATE ) THEN
WORK( I ) = CS
WORK( N+I ) = SN
END IF
10 CONTINUE
CALL SLARTG( D( N ), E( N ), CS, SN, R )
D( N ) = R
E( N ) = ZERO
IF( ROTATE ) THEN
WORK( N ) = CS
WORK( N+N ) = SN
END IF
IUPLO = 2
SQRE1 = 0
*
* Update singular vectors if desired.
*
IF( NCVT.GT.0 )
$ CALL SLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
$ WORK( NP1 ), VT, LDVT )
END IF
*
* If matrix lower bidiagonal, rotate to be upper bidiagonal
* by applying Givens rotations on the left.
*
IF( IUPLO.EQ.2 ) THEN
DO 20 I = 1, N - 1
CALL SLARTG( D( I ), E( I ), CS, SN, R )
D( I ) = R
E( I ) = SN*D( I+1 )
D( I+1 ) = CS*D( I+1 )
IF( ROTATE ) THEN
WORK( I ) = CS
WORK( N+I ) = SN
END IF
20 CONTINUE
*
* If matrix (N+1)-by-N lower bidiagonal, one additional
* rotation is needed.
*
IF( SQRE1.EQ.1 ) THEN
CALL SLARTG( D( N ), E( N ), CS, SN, R )
D( N ) = R
IF( ROTATE ) THEN
WORK( N ) = CS
WORK( N+N ) = SN
END IF
END IF
*
* Update singular vectors if desired.
*
IF( NRU.GT.0 ) THEN
IF( SQRE1.EQ.0 ) THEN
CALL SLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
$ WORK( NP1 ), U, LDU )
ELSE
CALL SLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
$ WORK( NP1 ), U, LDU )
END IF
END IF
IF( NCC.GT.0 ) THEN
IF( SQRE1.EQ.0 ) THEN
CALL SLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
$ WORK( NP1 ), C, LDC )
ELSE
CALL SLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
$ WORK( NP1 ), C, LDC )
END IF
END IF
END IF
*
* Call SBDSQR to compute the SVD of the reduced real
* N-by-N upper bidiagonal matrix.
*
CALL SBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
$ LDC, WORK, INFO )
*
* Sort the singular values into ascending order (insertion sort on
* singular values, but only one transposition per singular vector)
*
DO 40 I = 1, N
*
* Scan for smallest D(I).
*
ISUB = I
SMIN = D( I )
DO 30 J = I + 1, N
IF( D( J ).LT.SMIN ) THEN
ISUB = J
SMIN = D( J )
END IF
30 CONTINUE
IF( ISUB.NE.I ) THEN
*
* Swap singular values and vectors.
*
D( ISUB ) = D( I )
D( I ) = SMIN
IF( NCVT.GT.0 )
$ CALL SSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
IF( NRU.GT.0 )
$ CALL SSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
IF( NCC.GT.0 )
$ CALL SSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
END IF
40 CONTINUE
*
RETURN
*
* End of SLASDQ
*
END
|