summaryrefslogtreecommitdiff
path: root/SRC/slasd8.f
blob: 81a8625ae6beceb80703816c919457d06273390f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
*> \brief \b SLASD8 finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by sbdsdc.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLASD8 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd8.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd8.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd8.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
*                          DSIGMA, WORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            ICOMPQ, INFO, K, LDDIFR
*       ..
*       .. Array Arguments ..
*       REAL               D( * ), DIFL( * ), DIFR( LDDIFR, * ),
*      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
*      $                   Z( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLASD8 finds the square roots of the roots of the secular equation,
*> as defined by the values in DSIGMA and Z. It makes the appropriate
*> calls to SLASD4, and stores, for each  element in D, the distance
*> to its two nearest poles (elements in DSIGMA). It also updates
*> the arrays VF and VL, the first and last components of all the
*> right singular vectors of the original bidiagonal matrix.
*>
*> SLASD8 is called from SLASD6.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ICOMPQ
*> \verbatim
*>          ICOMPQ is INTEGER
*>          Specifies whether singular vectors are to be computed in
*>          factored form in the calling routine:
*>          = 0: Compute singular values only.
*>          = 1: Compute singular vectors in factored form as well.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of terms in the rational function to be solved
*>          by SLASD4.  K >= 1.
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*>          D is REAL array, dimension ( K )
*>          On output, D contains the updated singular values.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*>          Z is REAL array, dimension ( K )
*>          On entry, the first K elements of this array contain the
*>          components of the deflation-adjusted updating row vector.
*>          On exit, Z is updated.
*> \endverbatim
*>
*> \param[in,out] VF
*> \verbatim
*>          VF is REAL array, dimension ( K )
*>          On entry, VF contains  information passed through DBEDE8.
*>          On exit, VF contains the first K components of the first
*>          components of all right singular vectors of the bidiagonal
*>          matrix.
*> \endverbatim
*>
*> \param[in,out] VL
*> \verbatim
*>          VL is REAL array, dimension ( K )
*>          On entry, VL contains  information passed through DBEDE8.
*>          On exit, VL contains the first K components of the last
*>          components of all right singular vectors of the bidiagonal
*>          matrix.
*> \endverbatim
*>
*> \param[out] DIFL
*> \verbatim
*>          DIFL is REAL array, dimension ( K )
*>          On exit, DIFL(I) = D(I) - DSIGMA(I).
*> \endverbatim
*>
*> \param[out] DIFR
*> \verbatim
*>          DIFR is REAL array,
*>                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
*>                   dimension ( K ) if ICOMPQ = 0.
*>          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
*>          defined and will not be referenced.
*>
*>          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
*>          normalizing factors for the right singular vector matrix.
*> \endverbatim
*>
*> \param[in] LDDIFR
*> \verbatim
*>          LDDIFR is INTEGER
*>          The leading dimension of DIFR, must be at least K.
*> \endverbatim
*>
*> \param[in,out] DSIGMA
*> \verbatim
*>          DSIGMA is REAL array, dimension ( K )
*>          On entry, the first K elements of this array contain the old
*>          roots of the deflated updating problem.  These are the poles
*>          of the secular equation.
*>          On exit, the elements of DSIGMA may be very slightly altered
*>          in value.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension at least 3 * K
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if INFO = 1, a singular value did not converge
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
*  ==================
*>
*>     Ming Gu and Huan Ren, Computer Science Division, University of
*>     California at Berkeley, USA
*>
*  =====================================================================
      SUBROUTINE SLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
     $                   DSIGMA, WORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            ICOMPQ, INFO, K, LDDIFR
*     ..
*     .. Array Arguments ..
      REAL               D( * ), DIFL( * ), DIFR( LDDIFR, * ),
     $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
     $                   Z( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J
      REAL               DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLASCL, SLASD4, SLASET, XERBLA
*     ..
*     .. External Functions ..
      REAL               SDOT, SLAMC3, SNRM2
      EXTERNAL           SDOT, SLAMC3, SNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( K.LT.1 ) THEN
         INFO = -2
      ELSE IF( LDDIFR.LT.K ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASD8', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.1 ) THEN
         D( 1 ) = ABS( Z( 1 ) )
         DIFL( 1 ) = D( 1 )
         IF( ICOMPQ.EQ.1 ) THEN
            DIFL( 2 ) = ONE
            DIFR( 1, 2 ) = ONE
         END IF
         RETURN
      END IF
*
*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
*     be computed with high relative accuracy (barring over/underflow).
*     This is a problem on machines without a guard digit in
*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
*     which on any of these machines zeros out the bottommost
*     bit of DSIGMA(I) if it is 1; this makes the subsequent
*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
*     occurs. On binary machines with a guard digit (almost all
*     machines) it does not change DSIGMA(I) at all. On hexadecimal
*     and decimal machines with a guard digit, it slightly
*     changes the bottommost bits of DSIGMA(I). It does not account
*     for hexadecimal or decimal machines without guard digits
*     (we know of none). We use a subroutine call to compute
*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
*     this code.
*
      DO 10 I = 1, K
         DSIGMA( I ) = SLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
   10 CONTINUE
*
*     Book keeping.
*
      IWK1 = 1
      IWK2 = IWK1 + K
      IWK3 = IWK2 + K
      IWK2I = IWK2 - 1
      IWK3I = IWK3 - 1
*
*     Normalize Z.
*
      RHO = SNRM2( K, Z, 1 )
      CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
      RHO = RHO*RHO
*
*     Initialize WORK(IWK3).
*
      CALL SLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K )
*
*     Compute the updated singular values, the arrays DIFL, DIFR,
*     and the updated Z.
*
      DO 40 J = 1, K
         CALL SLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ),
     $                WORK( IWK2 ), INFO )
*
*        If the root finder fails, report the convergence failure.
*
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J )
         DIFL( J ) = -WORK( J )
         DIFR( J, 1 ) = -WORK( J+1 )
         DO 20 I = 1, J - 1
            WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
     $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
     $                        DSIGMA( J ) ) / ( DSIGMA( I )+
     $                        DSIGMA( J ) )
   20    CONTINUE
         DO 30 I = J + 1, K
            WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
     $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
     $                        DSIGMA( J ) ) / ( DSIGMA( I )+
     $                        DSIGMA( J ) )
   30    CONTINUE
   40 CONTINUE
*
*     Compute updated Z.
*
      DO 50 I = 1, K
         Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) )
   50 CONTINUE
*
*     Update VF and VL.
*
      DO 80 J = 1, K
         DIFLJ = DIFL( J )
         DJ = D( J )
         DSIGJ = -DSIGMA( J )
         IF( J.LT.K ) THEN
            DIFRJ = -DIFR( J, 1 )
            DSIGJP = -DSIGMA( J+1 )
         END IF
         WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ )
         DO 60 I = 1, J - 1
            WORK( I ) = Z( I ) / ( SLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ )
     $                   / ( DSIGMA( I )+DJ )
   60    CONTINUE
         DO 70 I = J + 1, K
            WORK( I ) = Z( I ) / ( SLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ )
     $                   / ( DSIGMA( I )+DJ )
   70    CONTINUE
         TEMP = SNRM2( K, WORK, 1 )
         WORK( IWK2I+J ) = SDOT( K, WORK, 1, VF, 1 ) / TEMP
         WORK( IWK3I+J ) = SDOT( K, WORK, 1, VL, 1 ) / TEMP
         IF( ICOMPQ.EQ.1 ) THEN
            DIFR( J, 2 ) = TEMP
         END IF
   80 CONTINUE
*
      CALL SCOPY( K, WORK( IWK2 ), 1, VF, 1 )
      CALL SCOPY( K, WORK( IWK3 ), 1, VL, 1 )
*
      RETURN
*
*     End of SLASD8
*
      END