1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
SUBROUTINE SLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
$ IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
$ LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
$ IWORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
$ NR, SQRE
REAL ALPHA, BETA, C, S
* ..
* .. Array Arguments ..
INTEGER GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
$ PERM( * )
REAL D( * ), DIFL( * ), DIFR( * ),
$ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
$ VF( * ), VL( * ), WORK( * ), Z( * )
* ..
*
* Purpose
* =======
*
* SLASD6 computes the SVD of an updated upper bidiagonal matrix B
* obtained by merging two smaller ones by appending a row. This
* routine is used only for the problem which requires all singular
* values and optionally singular vector matrices in factored form.
* B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
* A related subroutine, SLASD1, handles the case in which all singular
* values and singular vectors of the bidiagonal matrix are desired.
*
* SLASD6 computes the SVD as follows:
*
* ( D1(in) 0 0 0 )
* B = U(in) * ( Z1' a Z2' b ) * VT(in)
* ( 0 0 D2(in) 0 )
*
* = U(out) * ( D(out) 0) * VT(out)
*
* where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
* with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
* elsewhere; and the entry b is empty if SQRE = 0.
*
* The singular values of B can be computed using D1, D2, the first
* components of all the right singular vectors of the lower block, and
* the last components of all the right singular vectors of the upper
* block. These components are stored and updated in VF and VL,
* respectively, in SLASD6. Hence U and VT are not explicitly
* referenced.
*
* The singular values are stored in D. The algorithm consists of two
* stages:
*
* The first stage consists of deflating the size of the problem
* when there are multiple singular values or if there is a zero
* in the Z vector. For each such occurence the dimension of the
* secular equation problem is reduced by one. This stage is
* performed by the routine SLASD7.
*
* The second stage consists of calculating the updated
* singular values. This is done by finding the roots of the
* secular equation via the routine SLASD4 (as called by SLASD8).
* This routine also updates VF and VL and computes the distances
* between the updated singular values and the old singular
* values.
*
* SLASD6 is called from SLASDA.
*
* Arguments
* =========
*
* ICOMPQ (input) INTEGER
* Specifies whether singular vectors are to be computed in
* factored form:
* = 0: Compute singular values only.
* = 1: Compute singular vectors in factored form as well.
*
* NL (input) INTEGER
* The row dimension of the upper block. NL >= 1.
*
* NR (input) INTEGER
* The row dimension of the lower block. NR >= 1.
*
* SQRE (input) INTEGER
* = 0: the lower block is an NR-by-NR square matrix.
* = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*
* The bidiagonal matrix has row dimension N = NL + NR + 1,
* and column dimension M = N + SQRE.
*
* D (input/output) REAL array, dimension (NL+NR+1).
* On entry D(1:NL,1:NL) contains the singular values of the
* upper block, and D(NL+2:N) contains the singular values
* of the lower block. On exit D(1:N) contains the singular
* values of the modified matrix.
*
* VF (input/output) REAL array, dimension (M)
* On entry, VF(1:NL+1) contains the first components of all
* right singular vectors of the upper block; and VF(NL+2:M)
* contains the first components of all right singular vectors
* of the lower block. On exit, VF contains the first components
* of all right singular vectors of the bidiagonal matrix.
*
* VL (input/output) REAL array, dimension (M)
* On entry, VL(1:NL+1) contains the last components of all
* right singular vectors of the upper block; and VL(NL+2:M)
* contains the last components of all right singular vectors of
* the lower block. On exit, VL contains the last components of
* all right singular vectors of the bidiagonal matrix.
*
* ALPHA (input/output) REAL
* Contains the diagonal element associated with the added row.
*
* BETA (input/output) REAL
* Contains the off-diagonal element associated with the added
* row.
*
* IDXQ (output) INTEGER array, dimension (N)
* This contains the permutation which will reintegrate the
* subproblem just solved back into sorted order, i.e.
* D( IDXQ( I = 1, N ) ) will be in ascending order.
*
* PERM (output) INTEGER array, dimension ( N )
* The permutations (from deflation and sorting) to be applied
* to each block. Not referenced if ICOMPQ = 0.
*
* GIVPTR (output) INTEGER
* The number of Givens rotations which took place in this
* subproblem. Not referenced if ICOMPQ = 0.
*
* GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
* Each pair of numbers indicates a pair of columns to take place
* in a Givens rotation. Not referenced if ICOMPQ = 0.
*
* LDGCOL (input) INTEGER
* leading dimension of GIVCOL, must be at least N.
*
* GIVNUM (output) REAL array, dimension ( LDGNUM, 2 )
* Each number indicates the C or S value to be used in the
* corresponding Givens rotation. Not referenced if ICOMPQ = 0.
*
* LDGNUM (input) INTEGER
* The leading dimension of GIVNUM and POLES, must be at least N.
*
* POLES (output) REAL array, dimension ( LDGNUM, 2 )
* On exit, POLES(1,*) is an array containing the new singular
* values obtained from solving the secular equation, and
* POLES(2,*) is an array containing the poles in the secular
* equation. Not referenced if ICOMPQ = 0.
*
* DIFL (output) REAL array, dimension ( N )
* On exit, DIFL(I) is the distance between I-th updated
* (undeflated) singular value and the I-th (undeflated) old
* singular value.
*
* DIFR (output) REAL array,
* dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
* dimension ( N ) if ICOMPQ = 0.
* On exit, DIFR(I, 1) is the distance between I-th updated
* (undeflated) singular value and the I+1-th (undeflated) old
* singular value.
*
* If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
* normalizing factors for the right singular vector matrix.
*
* See SLASD8 for details on DIFL and DIFR.
*
* Z (output) REAL array, dimension ( M )
* The first elements of this array contain the components
* of the deflation-adjusted updating row vector.
*
* K (output) INTEGER
* Contains the dimension of the non-deflated matrix,
* This is the order of the related secular equation. 1 <= K <=N.
*
* C (output) REAL
* C contains garbage if SQRE =0 and the C-value of a Givens
* rotation related to the right null space if SQRE = 1.
*
* S (output) REAL
* S contains garbage if SQRE =0 and the S-value of a Givens
* rotation related to the right null space if SQRE = 1.
*
* WORK (workspace) REAL array, dimension ( 4 * M )
*
* IWORK (workspace) INTEGER array, dimension ( 3 * N )
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: if INFO = 1, a singular value did not converge
*
* Further Details
* ===============
*
* Based on contributions by
* Ming Gu and Huan Ren, Computer Science Division, University of
* California at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M,
$ N, N1, N2
REAL ORGNRM
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SLAMRG, SLASCL, SLASD7, SLASD8, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
N = NL + NR + 1
M = N + SQRE
*
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
INFO = -1
ELSE IF( NL.LT.1 ) THEN
INFO = -2
ELSE IF( NR.LT.1 ) THEN
INFO = -3
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
INFO = -4
ELSE IF( LDGCOL.LT.N ) THEN
INFO = -14
ELSE IF( LDGNUM.LT.N ) THEN
INFO = -16
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLASD6', -INFO )
RETURN
END IF
*
* The following values are for bookkeeping purposes only. They are
* integer pointers which indicate the portion of the workspace
* used by a particular array in SLASD7 and SLASD8.
*
ISIGMA = 1
IW = ISIGMA + N
IVFW = IW + M
IVLW = IVFW + M
*
IDX = 1
IDXC = IDX + N
IDXP = IDXC + N
*
* Scale.
*
ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
D( NL+1 ) = ZERO
DO 10 I = 1, N
IF( ABS( D( I ) ).GT.ORGNRM ) THEN
ORGNRM = ABS( D( I ) )
END IF
10 CONTINUE
CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
ALPHA = ALPHA / ORGNRM
BETA = BETA / ORGNRM
*
* Sort and Deflate singular values.
*
CALL SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF,
$ WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA,
$ WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ,
$ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S,
$ INFO )
*
* Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.
*
CALL SLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM,
$ WORK( ISIGMA ), WORK( IW ), INFO )
*
* Save the poles if ICOMPQ = 1.
*
IF( ICOMPQ.EQ.1 ) THEN
CALL SCOPY( K, D, 1, POLES( 1, 1 ), 1 )
CALL SCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 )
END IF
*
* Unscale.
*
CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
*
* Prepare the IDXQ sorting permutation.
*
N1 = K
N2 = N - K
CALL SLAMRG( N1, N2, D, 1, -1, IDXQ )
*
RETURN
*
* End of SLASD6
*
END
|