summaryrefslogtreecommitdiff
path: root/SRC/slasd5.f
blob: a362b86c780c30da33aee92cfe2921e7651e867a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
*> \brief \b SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLASD5 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd5.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd5.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd5.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
*
*       .. Scalar Arguments ..
*       INTEGER            I
*       REAL               DSIGMA, RHO
*       ..
*       .. Array Arguments ..
*       REAL               D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> This subroutine computes the square root of the I-th eigenvalue
*> of a positive symmetric rank-one modification of a 2-by-2 diagonal
*> matrix
*>
*>            diag( D ) * diag( D ) +  RHO * Z * transpose(Z) .
*>
*> The diagonal entries in the array D are assumed to satisfy
*>
*>            0 <= D(i) < D(j)  for  i < j .
*>
*> We also assume RHO > 0 and that the Euclidean norm of the vector
*> Z is one.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] I
*> \verbatim
*>          I is INTEGER
*>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (2)
*>         The original eigenvalues.  We assume 0 <= D(1) < D(2).
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is REAL array, dimension (2)
*>         The components of the updating vector.
*> \endverbatim
*>
*> \param[out] DELTA
*> \verbatim
*>          DELTA is REAL array, dimension (2)
*>         Contains (D(j) - sigma_I) in its  j-th component.
*>         The vector DELTA contains the information necessary
*>         to construct the eigenvectors.
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*>          RHO is REAL
*>         The scalar in the symmetric updating formula.
*> \endverbatim
*>
*> \param[out] DSIGMA
*> \verbatim
*>          DSIGMA is REAL
*>         The computed sigma_I, the I-th updated eigenvalue.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (2)
*>         WORK contains (D(j) + sigma_I) in its  j-th component.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
*  ==================
*>
*>     Ren-Cang Li, Computer Science Division, University of California
*>     at Berkeley, USA
*>
*  =====================================================================
      SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            I
      REAL               DSIGMA, RHO
*     ..
*     .. Array Arguments ..
      REAL               D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, THREE, FOUR
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
     $                   THREE = 3.0E+0, FOUR = 4.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               B, C, DEL, DELSQ, TAU, W
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
      DEL = D( 2 ) - D( 1 )
      DELSQ = DEL*( D( 2 )+D( 1 ) )
      IF( I.EQ.1 ) THEN
         W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
     $       Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
         IF( W.GT.ZERO ) THEN
            B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 1 )*Z( 1 )*DELSQ
*
*           B > ZERO, always
*
*           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
*
            TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
*
*           The following TAU is DSIGMA - D( 1 )
*
            TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
            DSIGMA = D( 1 ) + TAU
            DELTA( 1 ) = -TAU
            DELTA( 2 ) = DEL - TAU
            WORK( 1 ) = TWO*D( 1 ) + TAU
            WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
*           DELTA( 1 ) = -Z( 1 ) / TAU
*           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
         ELSE
            B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
*           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
            IF( B.GT.ZERO ) THEN
               TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
            ELSE
               TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
            END IF
*
*           The following TAU is DSIGMA - D( 2 )
*
            TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
            DSIGMA = D( 2 ) + TAU
            DELTA( 1 ) = -( DEL+TAU )
            DELTA( 2 ) = -TAU
            WORK( 1 ) = D( 1 ) + TAU + D( 2 )
            WORK( 2 ) = TWO*D( 2 ) + TAU
*           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
*           DELTA( 2 ) = -Z( 2 ) / TAU
         END IF
*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
*        DELTA( 1 ) = DELTA( 1 ) / TEMP
*        DELTA( 2 ) = DELTA( 2 ) / TEMP
      ELSE
*
*        Now I=2
*
         B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
         C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
*        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
         IF( B.GT.ZERO ) THEN
            TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
         ELSE
            TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
         END IF
*
*        The following TAU is DSIGMA - D( 2 )
*
         TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
         DSIGMA = D( 2 ) + TAU
         DELTA( 1 ) = -( DEL+TAU )
         DELTA( 2 ) = -TAU
         WORK( 1 ) = D( 1 ) + TAU + D( 2 )
         WORK( 2 ) = TWO*D( 2 ) + TAU
*        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
*        DELTA( 2 ) = -Z( 2 ) / TAU
*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
*        DELTA( 1 ) = DELTA( 1 ) / TEMP
*        DELTA( 2 ) = DELTA( 2 ) / TEMP
      END IF
      RETURN
*
*     End of SLASD5
*
      END