summaryrefslogtreecommitdiff
path: root/SRC/slasd3.f
blob: f9b0c01dbce5097f74e8ea1d615a1944171a8f9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
*> \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLASD3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd3.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
*                          LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
*                          INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
*      $                   SQRE
*       ..
*       .. Array Arguments ..
*       INTEGER            CTOT( * ), IDXC( * )
*       REAL               D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
*      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
*      $                   Z( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLASD3 finds all the square roots of the roots of the secular
*> equation, as defined by the values in D and Z.  It makes the
*> appropriate calls to SLASD4 and then updates the singular
*> vectors by matrix multiplication.
*>
*> This code makes very mild assumptions about floating point
*> arithmetic. It will work on machines with a guard digit in
*> add/subtract, or on those binary machines without guard digits
*> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
*> It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none.
*>
*> SLASD3 is called from SLASD1.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NL
*> \verbatim
*>          NL is INTEGER
*>         The row dimension of the upper block.  NL >= 1.
*> \endverbatim
*>
*> \param[in] NR
*> \verbatim
*>          NR is INTEGER
*>         The row dimension of the lower block.  NR >= 1.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*>          SQRE is INTEGER
*>         = 0: the lower block is an NR-by-NR square matrix.
*>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*>
*>         The bidiagonal matrix has N = NL + NR + 1 rows and
*>         M = N + SQRE >= N columns.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>         The size of the secular equation, 1 =< K = < N.
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*>          D is REAL array, dimension(K)
*>         On exit the square roots of the roots of the secular equation,
*>         in ascending order.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is REAL array, dimension (LDQ,K)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>         The leading dimension of the array Q.  LDQ >= K.
*> \endverbatim
*>
*> \param[in,out] DSIGMA
*> \verbatim
*>          DSIGMA is REAL array, dimension(K)
*>         The first K elements of this array contain the old roots
*>         of the deflated updating problem.  These are the poles
*>         of the secular equation.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is REAL array, dimension (LDU, N)
*>         The last N - K columns of this matrix contain the deflated
*>         left singular vectors.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>         The leading dimension of the array U.  LDU >= N.
*> \endverbatim
*>
*> \param[in] U2
*> \verbatim
*>          U2 is REAL array, dimension (LDU2, N)
*>         The first K columns of this matrix contain the non-deflated
*>         left singular vectors for the split problem.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*>          LDU2 is INTEGER
*>         The leading dimension of the array U2.  LDU2 >= N.
*> \endverbatim
*>
*> \param[out] VT
*> \verbatim
*>          VT is REAL array, dimension (LDVT, M)
*>         The last M - K columns of VT**T contain the deflated
*>         right singular vectors.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*>          LDVT is INTEGER
*>         The leading dimension of the array VT.  LDVT >= N.
*> \endverbatim
*>
*> \param[in,out] VT2
*> \verbatim
*>          VT2 is REAL array, dimension (LDVT2, N)
*>         The first K columns of VT2**T contain the non-deflated
*>         right singular vectors for the split problem.
*> \endverbatim
*>
*> \param[in] LDVT2
*> \verbatim
*>          LDVT2 is INTEGER
*>         The leading dimension of the array VT2.  LDVT2 >= N.
*> \endverbatim
*>
*> \param[in] IDXC
*> \verbatim
*>          IDXC is INTEGER array, dimension (N)
*>         The permutation used to arrange the columns of U (and rows of
*>         VT) into three groups:  the first group contains non-zero
*>         entries only at and above (or before) NL +1; the second
*>         contains non-zero entries only at and below (or after) NL+2;
*>         and the third is dense. The first column of U and the row of
*>         VT are treated separately, however.
*>
*>         The rows of the singular vectors found by SLASD4
*>         must be likewise permuted before the matrix multiplies can
*>         take place.
*> \endverbatim
*>
*> \param[in] CTOT
*> \verbatim
*>          CTOT is INTEGER array, dimension (4)
*>         A count of the total number of the various types of columns
*>         in U (or rows in VT), as described in IDXC. The fourth column
*>         type is any column which has been deflated.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*>          Z is REAL array, dimension (K)
*>         The first K elements of this array contain the components
*>         of the deflation-adjusted updating row vector.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>         = 0:  successful exit.
*>         < 0:  if INFO = -i, the i-th argument had an illegal value.
*>         > 0:  if INFO = 1, a singular value did not converge
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
*  ==================
*>
*>     Ming Gu and Huan Ren, Computer Science Division, University of
*>     California at Berkeley, USA
*>
*  =====================================================================
      SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
     $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
     $                   INFO )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
     $                   SQRE
*     ..
*     .. Array Arguments ..
      INTEGER            CTOT( * ), IDXC( * )
      REAL               D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
     $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
     $                   Z( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO, NEGONE
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0,
     $                     NEGONE = -1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
      REAL               RHO, TEMP
*     ..
*     .. External Functions ..
      REAL               SLAMC3, SNRM2
      EXTERNAL           SLAMC3, SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEMM, SLACPY, SLASCL, SLASD4, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( NL.LT.1 ) THEN
         INFO = -1
      ELSE IF( NR.LT.1 ) THEN
         INFO = -2
      ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
         INFO = -3
      END IF
*
      N = NL + NR + 1
      M = N + SQRE
      NLP1 = NL + 1
      NLP2 = NL + 2
*
      IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
         INFO = -4
      ELSE IF( LDQ.LT.K ) THEN
         INFO = -7
      ELSE IF( LDU.LT.N ) THEN
         INFO = -10
      ELSE IF( LDU2.LT.N ) THEN
         INFO = -12
      ELSE IF( LDVT.LT.M ) THEN
         INFO = -14
      ELSE IF( LDVT2.LT.M ) THEN
         INFO = -16
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASD3', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.1 ) THEN
         D( 1 ) = ABS( Z( 1 ) )
         CALL SCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
         IF( Z( 1 ).GT.ZERO ) THEN
            CALL SCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
         ELSE
            DO 10 I = 1, N
               U( I, 1 ) = -U2( I, 1 )
   10       CONTINUE
         END IF
         RETURN
      END IF
*
*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
*     be computed with high relative accuracy (barring over/underflow).
*     This is a problem on machines without a guard digit in
*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
*     which on any of these machines zeros out the bottommost
*     bit of DSIGMA(I) if it is 1; this makes the subsequent
*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
*     occurs. On binary machines with a guard digit (almost all
*     machines) it does not change DSIGMA(I) at all. On hexadecimal
*     and decimal machines with a guard digit, it slightly
*     changes the bottommost bits of DSIGMA(I). It does not account
*     for hexadecimal or decimal machines without guard digits
*     (we know of none). We use a subroutine call to compute
*     2*DSIGMA(I) to prevent optimizing compilers from eliminating
*     this code.
*
      DO 20 I = 1, K
         DSIGMA( I ) = SLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
   20 CONTINUE
*
*     Keep a copy of Z.
*
      CALL SCOPY( K, Z, 1, Q, 1 )
*
*     Normalize Z.
*
      RHO = SNRM2( K, Z, 1 )
      CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
      RHO = RHO*RHO
*
*     Find the new singular values.
*
      DO 30 J = 1, K
         CALL SLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
     $                VT( 1, J ), INFO )
*
*        If the zero finder fails, report the convergence failure.
*
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
   30 CONTINUE
*
*     Compute updated Z.
*
      DO 60 I = 1, K
         Z( I ) = U( I, K )*VT( I, K )
         DO 40 J = 1, I - 1
            Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
     $               ( DSIGMA( I )-DSIGMA( J ) ) /
     $               ( DSIGMA( I )+DSIGMA( J ) ) )
   40    CONTINUE
         DO 50 J = I, K - 1
            Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
     $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
     $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
   50    CONTINUE
         Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
   60 CONTINUE
*
*     Compute left singular vectors of the modified diagonal matrix,
*     and store related information for the right singular vectors.
*
      DO 90 I = 1, K
         VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
         U( 1, I ) = NEGONE
         DO 70 J = 2, K
            VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
            U( J, I ) = DSIGMA( J )*VT( J, I )
   70    CONTINUE
         TEMP = SNRM2( K, U( 1, I ), 1 )
         Q( 1, I ) = U( 1, I ) / TEMP
         DO 80 J = 2, K
            JC = IDXC( J )
            Q( J, I ) = U( JC, I ) / TEMP
   80    CONTINUE
   90 CONTINUE
*
*     Update the left singular vector matrix.
*
      IF( K.EQ.2 ) THEN
         CALL SGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
     $               LDU )
         GO TO 100
      END IF
      IF( CTOT( 1 ).GT.0 ) THEN
         CALL SGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
     $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
         IF( CTOT( 3 ).GT.0 ) THEN
            KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
            CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
     $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
         END IF
      ELSE IF( CTOT( 3 ).GT.0 ) THEN
         KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
         CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
     $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
      ELSE
         CALL SLACPY( 'F', NL, K, U2, LDU2, U, LDU )
      END IF
      CALL SCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
      KTEMP = 2 + CTOT( 1 )
      CTEMP = CTOT( 2 ) + CTOT( 3 )
      CALL SGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
     $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
*
*     Generate the right singular vectors.
*
  100 CONTINUE
      DO 120 I = 1, K
         TEMP = SNRM2( K, VT( 1, I ), 1 )
         Q( I, 1 ) = VT( 1, I ) / TEMP
         DO 110 J = 2, K
            JC = IDXC( J )
            Q( I, J ) = VT( JC, I ) / TEMP
  110    CONTINUE
  120 CONTINUE
*
*     Update the right singular vector matrix.
*
      IF( K.EQ.2 ) THEN
         CALL SGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
     $               VT, LDVT )
         RETURN
      END IF
      KTEMP = 1 + CTOT( 1 )
      CALL SGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
     $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
      KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
      IF( KTEMP.LE.LDVT2 )
     $   CALL SGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
     $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
     $               LDVT )
*
      KTEMP = CTOT( 1 ) + 1
      NRP1 = NR + SQRE
      IF( KTEMP.GT.1 ) THEN
         DO 130 I = 1, K
            Q( I, KTEMP ) = Q( I, 1 )
  130    CONTINUE
         DO 140 I = NLP2, M
            VT2( KTEMP, I ) = VT2( 1, I )
  140    CONTINUE
      END IF
      CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
      CALL SGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
     $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
*
      RETURN
*
*     End of SLASD3
*
      END