summaryrefslogtreecommitdiff
path: root/SRC/slasd0.f
blob: 047ad1c323fb5d3a68f9ecbd1d61cd33029e282c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
*> \brief \b SLASD0
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> Download SLASD0 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd0.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd0.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd0.f"> 
*> [TXT]</a> 
*
*  Definition
*  ==========
*
*       SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
*                          WORK, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       REAL               D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
*      $                   WORK( * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> Using a divide and conquer approach, SLASD0 computes the singular
*> value decomposition (SVD) of a real upper bidiagonal N-by-M
*> matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
*> The algorithm computes orthogonal matrices U and VT such that
*> B = U * S * VT. The singular values S are overwritten on D.
*>
*> A related subroutine, SLASDA, computes only the singular values,
*> and optionally, the singular vectors in compact form.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         On entry, the row dimension of the upper bidiagonal matrix.
*>         This is also the dimension of the main diagonal array D.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*>          SQRE is INTEGER
*>         Specifies the column dimension of the bidiagonal matrix.
*>         = 0: The bidiagonal matrix has column dimension M = N;
*>         = 1: The bidiagonal matrix has column dimension M = N+1;
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>         On entry D contains the main diagonal of the bidiagonal
*>         matrix.
*>         On exit D, if INFO = 0, contains its singular values.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is REAL array, dimension (M-1)
*>         Contains the subdiagonal entries of the bidiagonal matrix.
*>         On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is REAL array, dimension at least (LDQ, N)
*>         On exit, U contains the left singular vectors.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>         On entry, leading dimension of U.
*> \endverbatim
*>
*> \param[out] VT
*> \verbatim
*>          VT is REAL array, dimension at least (LDVT, M)
*>         On exit, VT**T contains the right singular vectors.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*>          LDVT is INTEGER
*>         On entry, leading dimension of VT.
*> \endverbatim
*>
*> \param[in] SMLSIZ
*> \verbatim
*>          SMLSIZ is INTEGER
*>         On entry, maximum size of the subproblems at the
*>         bottom of the computation tree.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (8*N)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (3*M**2+2*M)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if INFO = 1, a singular value did not converge
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*
*  Further Details
*  ===============
*>\details \b Further \b Details
*> \verbatim
*>
*>  Based on contributions by
*>     Ming Gu and Huan Ren, Computer Science Division, University of
*>     California at Berkeley, USA
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
     $                   WORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
     $                   WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
     $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
     $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
      REAL               ALPHA, BETA
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASD1, SLASDQ, SLASDT, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -2
      END IF
*
      M = N + SQRE
*
      IF( LDU.LT.N ) THEN
         INFO = -6
      ELSE IF( LDVT.LT.M ) THEN
         INFO = -8
      ELSE IF( SMLSIZ.LT.3 ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASD0', -INFO )
         RETURN
      END IF
*
*     If the input matrix is too small, call SLASDQ to find the SVD.
*
      IF( N.LE.SMLSIZ ) THEN
         CALL SLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
     $                LDU, WORK, INFO )
         RETURN
      END IF
*
*     Set up the computation tree.
*
      INODE = 1
      NDIML = INODE + N
      NDIMR = NDIML + N
      IDXQ = NDIMR + N
      IWK = IDXQ + N
      CALL SLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
     $             IWORK( NDIMR ), SMLSIZ )
*
*     For the nodes on bottom level of the tree, solve
*     their subproblems by SLASDQ.
*
      NDB1 = ( ND+1 ) / 2
      NCC = 0
      DO 30 I = NDB1, ND
*
*     IC : center row of each node
*     NL : number of rows of left  subproblem
*     NR : number of rows of right subproblem
*     NLF: starting row of the left   subproblem
*     NRF: starting row of the right  subproblem
*
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NLP1 = NL + 1
         NR = IWORK( NDIMR+I1 )
         NRP1 = NR + 1
         NLF = IC - NL
         NRF = IC + 1
         SQREI = 1
         CALL SLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
     $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
     $                U( NLF, NLF ), LDU, WORK, INFO )
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         ITEMP = IDXQ + NLF - 2
         DO 10 J = 1, NL
            IWORK( ITEMP+J ) = J
   10    CONTINUE
         IF( I.EQ.ND ) THEN
            SQREI = SQRE
         ELSE
            SQREI = 1
         END IF
         NRP1 = NR + SQREI
         CALL SLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
     $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
     $                U( NRF, NRF ), LDU, WORK, INFO )
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         ITEMP = IDXQ + IC
         DO 20 J = 1, NR
            IWORK( ITEMP+J-1 ) = J
   20    CONTINUE
   30 CONTINUE
*
*     Now conquer each subproblem bottom-up.
*
      DO 50 LVL = NLVL, 1, -1
*
*        Find the first node LF and last node LL on the
*        current level LVL.
*
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 40 I = LF, LL
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
               SQREI = SQRE
            ELSE
               SQREI = 1
            END IF
            IDXQC = IDXQ + NLF - 1
            ALPHA = D( IC )
            BETA = E( IC )
            CALL SLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
     $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
     $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
            IF( INFO.NE.0 ) THEN
               RETURN
            END IF
   40    CONTINUE
   50 CONTINUE
*
      RETURN
*
*     End of SLASD0
*
      END