1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
SUBROUTINE SLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
* -- LAPACK routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* -- April 2011 --
*
* .. Scalar Arguments ..
CHARACTER DIRECT, STOREV
INTEGER K, LDT, LDV, N
* ..
* .. Array Arguments ..
REAL T( LDT, * ), TAU( * ), V( LDV, * )
* ..
*
* Purpose
* =======
*
* SLARZT forms the triangular factor T of a real block reflector
* H of order > n, which is defined as a product of k elementary
* reflectors.
*
* If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
* If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
* If STOREV = 'C', the vector which defines the elementary reflector
* H(i) is stored in the i-th column of the array V, and
*
* H = I - V * T * V**T
*
* If STOREV = 'R', the vector which defines the elementary reflector
* H(i) is stored in the i-th row of the array V, and
*
* H = I - V**T * T * V
*
* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
* Arguments
* =========
*
* DIRECT (input) CHARACTER*1
* Specifies the order in which the elementary reflectors are
* multiplied to form the block reflector:
* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
* = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
* STOREV (input) CHARACTER*1
* Specifies how the vectors which define the elementary
* reflectors are stored (see also Further Details):
* = 'C': columnwise (not supported yet)
* = 'R': rowwise
*
* N (input) INTEGER
* The order of the block reflector H. N >= 0.
*
* K (input) INTEGER
* The order of the triangular factor T (= the number of
* elementary reflectors). K >= 1.
*
* V (input/output) REAL array, dimension
* (LDV,K) if STOREV = 'C'
* (LDV,N) if STOREV = 'R'
* The matrix V. See further details.
*
* LDV (input) INTEGER
* The leading dimension of the array V.
* If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*
* TAU (input) REAL array, dimension (K)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i).
*
* T (output) REAL array, dimension (LDT,K)
* The k by k triangular factor T of the block reflector.
* If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
* lower triangular. The rest of the array is not used.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= K.
*
* Further Details
* ===============
*
* Based on contributions by
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
* The shape of the matrix V and the storage of the vectors which define
* the H(i) is best illustrated by the following example with n = 5 and
* k = 3. The elements equal to 1 are not stored; the corresponding
* array elements are modified but restored on exit. The rest of the
* array is not used.
*
* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
*
* ______V_____
* ( v1 v2 v3 ) / \
* ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
* V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
* ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
* ( v1 v2 v3 )
* . . .
* . . .
* 1 . .
* 1 .
* 1
*
* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
*
* ______V_____
* 1 / \
* . 1 ( 1 . . . . v1 v1 v1 v1 v1 )
* . . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
* . . . ( . . 1 . . v3 v3 v3 v3 v3 )
* . . .
* ( v1 v2 v3 )
* ( v1 v2 v3 )
* V = ( v1 v2 v3 )
* ( v1 v2 v3 )
* ( v1 v2 v3 )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
* ..
* .. External Subroutines ..
EXTERNAL SGEMV, STRMV, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
* Check for currently supported options
*
INFO = 0
IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLARZT', -INFO )
RETURN
END IF
*
DO 20 I = K, 1, -1
IF( TAU( I ).EQ.ZERO ) THEN
*
* H(i) = I
*
DO 10 J = I, K
T( J, I ) = ZERO
10 CONTINUE
ELSE
*
* general case
*
IF( I.LT.K ) THEN
*
* T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**T
*
CALL SGEMV( 'No transpose', K-I, N, -TAU( I ),
$ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
$ T( I+1, I ), 1 )
*
* T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
*
CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
END IF
T( I, I ) = TAU( I )
END IF
20 CONTINUE
RETURN
*
* End of SLARZT
*
END
|