1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
*> \brief \b SLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARRK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrk.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrk.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrk.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLARRK( N, IW, GL, GU,
* D, E2, PIVMIN, RELTOL, W, WERR, INFO)
*
* .. Scalar Arguments ..
* INTEGER INFO, IW, N
* REAL PIVMIN, RELTOL, GL, GU, W, WERR
* ..
* .. Array Arguments ..
* REAL D( * ), E2( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARRK computes one eigenvalue of a symmetric tridiagonal
*> matrix T to suitable accuracy. This is an auxiliary code to be
*> called from SSTEMR.
*>
*> To avoid overflow, the matrix must be scaled so that its
*> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
*> accuracy, it should not be much smaller than that.
*>
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*> Matrix", Report CS41, Computer Science Dept., Stanford
*> University, July 21, 1966.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the tridiagonal matrix T. N >= 0.
*> \endverbatim
*>
*> \param[in] IW
*> \verbatim
*> IW is INTEGER
*> The index of the eigenvalues to be returned.
*> \endverbatim
*>
*> \param[in] GL
*> \verbatim
*> GL is REAL
*> \endverbatim
*>
*> \param[in] GU
*> \verbatim
*> GU is REAL
*> An upper and a lower bound on the eigenvalue.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The n diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] E2
*> \verbatim
*> E2 is REAL array, dimension (N-1)
*> The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is REAL
*> The minimum pivot allowed in the Sturm sequence for T.
*> \endverbatim
*>
*> \param[in] RELTOL
*> \verbatim
*> RELTOL is REAL
*> The minimum relative width of an interval. When an interval
*> is narrower than RELTOL times the larger (in
*> magnitude) endpoint, then it is considered to be
*> sufficiently small, i.e., converged. Note: this should
*> always be at least radix*machine epsilon.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is REAL
*> \endverbatim
*>
*> \param[out] WERR
*> \verbatim
*> WERR is REAL
*> The error bound on the corresponding eigenvalue approximation
*> in W.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: Eigenvalue converged
*> = -1: Eigenvalue did NOT converge
*> \endverbatim
*
*> \par Internal Parameters:
* =========================
*>
*> \verbatim
*> FUDGE REAL , default = 2
*> A "fudge factor" to widen the Gershgorin intervals.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup auxOTHERauxiliary
*
* =====================================================================
SUBROUTINE SLARRK( N, IW, GL, GU,
$ D, E2, PIVMIN, RELTOL, W, WERR, INFO)
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER INFO, IW, N
REAL PIVMIN, RELTOL, GL, GU, W, WERR
* ..
* .. Array Arguments ..
REAL D( * ), E2( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL FUDGE, HALF, TWO, ZERO
PARAMETER ( HALF = 0.5E0, TWO = 2.0E0,
$ FUDGE = TWO, ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER I, IT, ITMAX, NEGCNT
REAL ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1,
$ TMP2, TNORM
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX
* ..
* .. Executable Statements ..
*
* Get machine constants
EPS = SLAMCH( 'P' )
TNORM = MAX( ABS( GL ), ABS( GU ) )
RTOLI = RELTOL
ATOLI = FUDGE*TWO*PIVMIN
ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
$ LOG( TWO ) ) + 2
INFO = -1
LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
IT = 0
10 CONTINUE
*
* Check if interval converged or maximum number of iterations reached
*
TMP1 = ABS( RIGHT - LEFT )
TMP2 = MAX( ABS(RIGHT), ABS(LEFT) )
IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN
INFO = 0
GOTO 30
ENDIF
IF(IT.GT.ITMAX)
$ GOTO 30
*
* Count number of negative pivots for mid-point
*
IT = IT + 1
MID = HALF * (LEFT + RIGHT)
NEGCNT = 0
TMP1 = D( 1 ) - MID
IF( ABS( TMP1 ).LT.PIVMIN )
$ TMP1 = -PIVMIN
IF( TMP1.LE.ZERO )
$ NEGCNT = NEGCNT + 1
*
DO 20 I = 2, N
TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID
IF( ABS( TMP1 ).LT.PIVMIN )
$ TMP1 = -PIVMIN
IF( TMP1.LE.ZERO )
$ NEGCNT = NEGCNT + 1
20 CONTINUE
IF(NEGCNT.GE.IW) THEN
RIGHT = MID
ELSE
LEFT = MID
ENDIF
GOTO 10
30 CONTINUE
*
* Converged or maximum number of iterations reached
*
W = HALF * (LEFT + RIGHT)
WERR = HALF * ABS( RIGHT - LEFT )
RETURN
*
* End of SLARRK
*
END
|