1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
*> \brief \b SLARRC
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARRC + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrc.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrc.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrc.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
* EIGCNT, LCNT, RCNT, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBT
* INTEGER EIGCNT, INFO, LCNT, N, RCNT
* REAL PIVMIN, VL, VU
* ..
* .. Array Arguments ..
* REAL D( * ), E( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Find the number of eigenvalues of the symmetric tridiagonal matrix T
*> that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
*> if JOBT = 'L'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBT
*> \verbatim
*> JOBT is CHARACTER*1
*> = 'T': Compute Sturm count for matrix T.
*> = 'L': Compute Sturm count for matrix L D L^T.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix. N > 0.
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*> VL is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*> VU is DOUBLE PRECISION
*> The lower and upper bounds for the eigenvalues.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> JOBT = 'T': The N diagonal elements of the tridiagonal matrix T.
*> JOBT = 'L': The N diagonal elements of the diagonal matrix D.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N)
*> JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
*> JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is REAL
*> The minimum pivot in the Sturm sequence for T.
*> \endverbatim
*>
*> \param[out] EIGCNT
*> \verbatim
*> EIGCNT is INTEGER
*> The number of eigenvalues of the symmetric tridiagonal matrix T
*> that are in the interval (VL,VU]
*> \endverbatim
*>
*> \param[out] LCNT
*> \verbatim
*> LCNT is INTEGER
*> \endverbatim
*>
*> \param[out] RCNT
*> \verbatim
*> RCNT is INTEGER
*> The left and right negcounts of the interval.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Beresford Parlett, University of California, Berkeley, USA \n
*> Jim Demmel, University of California, Berkeley, USA \n
*> Inderjit Dhillon, University of Texas, Austin, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*> Christof Voemel, University of California, Berkeley, USA
*
* =====================================================================
SUBROUTINE SLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
$ EIGCNT, LCNT, RCNT, INFO )
*
* -- LAPACK auxiliary routine (version 3.2.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBT
INTEGER EIGCNT, INFO, LCNT, N, RCNT
REAL PIVMIN, VL, VU
* ..
* .. Array Arguments ..
REAL D( * ), E( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER I
LOGICAL MATT
REAL LPIVOT, RPIVOT, SL, SU, TMP, TMP2
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
INFO = 0
LCNT = 0
RCNT = 0
EIGCNT = 0
MATT = LSAME( JOBT, 'T' )
IF (MATT) THEN
* Sturm sequence count on T
LPIVOT = D( 1 ) - VL
RPIVOT = D( 1 ) - VU
IF( LPIVOT.LE.ZERO ) THEN
LCNT = LCNT + 1
ENDIF
IF( RPIVOT.LE.ZERO ) THEN
RCNT = RCNT + 1
ENDIF
DO 10 I = 1, N-1
TMP = E(I)**2
LPIVOT = ( D( I+1 )-VL ) - TMP/LPIVOT
RPIVOT = ( D( I+1 )-VU ) - TMP/RPIVOT
IF( LPIVOT.LE.ZERO ) THEN
LCNT = LCNT + 1
ENDIF
IF( RPIVOT.LE.ZERO ) THEN
RCNT = RCNT + 1
ENDIF
10 CONTINUE
ELSE
* Sturm sequence count on L D L^T
SL = -VL
SU = -VU
DO 20 I = 1, N - 1
LPIVOT = D( I ) + SL
RPIVOT = D( I ) + SU
IF( LPIVOT.LE.ZERO ) THEN
LCNT = LCNT + 1
ENDIF
IF( RPIVOT.LE.ZERO ) THEN
RCNT = RCNT + 1
ENDIF
TMP = E(I) * D(I) * E(I)
*
TMP2 = TMP / LPIVOT
IF( TMP2.EQ.ZERO ) THEN
SL = TMP - VL
ELSE
SL = SL*TMP2 - VL
END IF
*
TMP2 = TMP / RPIVOT
IF( TMP2.EQ.ZERO ) THEN
SU = TMP - VU
ELSE
SU = SU*TMP2 - VU
END IF
20 CONTINUE
LPIVOT = D( N ) + SL
RPIVOT = D( N ) + SU
IF( LPIVOT.LE.ZERO ) THEN
LCNT = LCNT + 1
ENDIF
IF( RPIVOT.LE.ZERO ) THEN
RCNT = RCNT + 1
ENDIF
ENDIF
EIGCNT = RCNT - LCNT
RETURN
*
* end of SLARRC
*
END
|